Random Walk, Markov Chain

一、基础

  1. 什么是随机过程
  2. 什么是马尔可夫链
  3. 什么是随机游走
  4. 什么是图上的随机游走,与随机游走的区别

什么是随机过程

  • 对比:确定过程研究某个量随时间的变化;随机过程研究某个量随时间的可能变化,每个时刻变化的方向(取值)不确定。
  • 定义:由一系列随机变量组成。每一个时刻系统的状态都由一个随机变量表示,而整个过程则构成态空间的一个轨迹(随机过程的实现)。一个随机过程最终实现,会得到一组随时间变化的数值(状态态空间里的轨迹),实践中我们都是从数据结果中推测一个随机过程的性质的。
  • 意义:概率是建立在可重复性上,是一个理想模型,而建立在此上的随机过程就更是一个理想化的模型,它暗含的是历史可无限重复,然后你把他们收集在一起。
  • 复杂性:这是一个高维问题,因为一个随机过程具有无限多可能性。试想象一个最简单的随机过程,这个过程由N步组成,每一步都有两个选择(0,1),那么可能的路径就有2的N次方个,这个随机过程就要由2^N-1个概率来描述(-1是因为已知概率和为1)。

什么是马尔可夫过程

未来所处的状态仅与其当前状态有关,而与过去的状态无关的随机过程。因为当前状态本来就包含了过去状态信息。

什么是马尔可夫链 Markov Chain

是一种满足马尔可夫性的数学模型。用条件概率体现马尔可夫性。n为时间。
P r ( X n + 1 = x n + 1 ∣ X 1 = x 1 , . . . , X n = x n ) = P r ( X n + 1 = x n + 1 ∣ X n = x n ) Pr(X_{n+1}=x_{n+1} | X_1=x_1, ..., X_n=x_n)=Pr(X_{n+1}=x_{n+1} | X_n=x_n) Pr(Xn+1=xn+1X1=x1,...,Xn=xn)=Pr(Xn+1=xn+1Xn=xn)

什么是平稳分布/稳态 Stationary

每一步和前一步关系与时间无关。
P r ( X n + 1 = x n + 1 ∣ X n = x n ) = P r ( X n = x n ∣ X n − 1 = x n − 1 ) Pr(X_{n+1}=x_{n+1} | X_n=x_n)=Pr(X_n=x_n | X_{n-1}=x_{n-1}) Pr(Xn+1=xn+1Xn=xn)=Pr(Xn=xnXn1=xn1)

细致平衡条件 Detailed Balance

π i p i j = π j p j i \pi_ip_{ij}=\pi_jp_{ji} πipij=πjpji
∑ ( π i p i j ) = π j \sum(\pi_ip_{ij})=\pi_j (πipij)=πj
对于可逆Markov chian,状态分布 π \pi π为平稳分布, π = π P \pi=\pi P π=πP ,P为转移矩阵

什么是随机游走 Random Walk

{ X n } \{X_n\} {Xn} i.i.d.(独立同分布), S 0 = 0 , S n = ∑ i = 1 n ( X i ) , n > 0 , { S n , n > = 0 } S_0=0, S_n=\sum\limits_{i=1}^n(X_i), n>0,\{S_n, n>=0\} S0=0,Sn=i=1n(Xi),n>0,{Sn,n>=0}称为随机游走过程.

简单随机游走(1维)

考虑整数轴上的随机游走:整数轴Z,起始点0,往左+1,往右-1,每次移动等概率。

  1. 每次状态记为 Z j Z_j Zj,取值{-1, 1},取值概率各为0.5。 S 0 = 0 , S n = ∑ ( Z j ) S_0=0,S_n=\sum(Z_j) S0=0Sn=(Zj),序列 { S n } \{S_n\} {Sn}称为整数轴上的random walk

  2. 和Markov chain联系:状态i看作当前所在的整数, P i , i + 1 = 1 − P i , i − 1 P_{i,i+1}=1-P_{i,i-1} Pi,i+1=1Pi,i1

  3. 推广到图上,一般是Markov的形式。

t0t1t2t3随机变量~分布
Z0=0Z1=+1Z2=+1Z3=-1动作Zi~(离散型均匀分布,取值{-1,1},概率均为1/2)
S0=0S1=1S2=2S3=1位置结果Si,序列{Si}为random walk
X0=0X1=1X2=2X3=1状态Xi~(离散型均匀分布,取值为上一时刻的邻域,概率均为 1 / d ( X i − 1 ) 1/d(X_{i-1}) 1/d(Xi1),整数轴上图的度d=2)

二、图上的随机游走 RW on Graph

在图上:有限的Markov chain
在有向图上:带边权的Markov chain
在无向图上:time-reversible的Markov chain
在对称无向图上:对称Markov chain

1. Basic notions and facts (Markov Chain)

G = ( V , E ) G=(V,E) G=(V,E)为connected的,m条边,n个节点; v t v_t vt为t时刻随机游走到的节点,序列 { v t , t = 0 , 1 , . . . } \{v_t,t=0,1,...\} {vt,t=0,1,...}为马尔可夫链

  • 转移概率矩阵 M
    M = ( p i j ) M=(p_{ij}) M=(pij)
    i 到 j 的 转 移 概 率 p i j = { 1 / d ( i ) , 若 i j 属 于 E 0 , e l s e i到j的转移概率p_{ij}=\left\{ \begin{aligned} 1/d(i) &,& 若ij属于E\\ 0 &,& else \end{aligned} \right. ijpij={1/d(i)0,,ijEelse
  • 对角矩阵 D
    ( D ) i i = 1 / d ( i ) (D)_{ii}=1/d(i) (D)ii=1/d(i), G为d-regular时,d为常数, ( D ) i i = 1 / d (D)_{ii}=1/d (D)ii=1/d
  • 邻接矩阵 A
    三者关系是 M = D A G M=DA_G M=DAG
  • 状态矩阵 P(概率分布/Markov模型 )
    P t + 1 = M T P t P_{t+1}=M^TP_t Pt+1=MTPt P t = ( M T ) t P 0 P_{t}=(M^T)^tP_0 Pt=(MT)tP0,t时刻分布和转移概率决定下一时刻分布
    其中 P t ( i ) = P r o b ( v t = i ) P_t(i)=Prob(v_t=i) Pt(i)=Prob(vt=i),是t时刻在点i的概率
    ( M t ) i j = p i j t (M^t)_{ij}=p_{ij}^t (Mt)ij=pijt,幂次相乘后矩阵的元素为经过t步从i->j的概率
  • 平稳分布(stationary distribution) π \pi π
    P 1 = P 0 P_1=P_0 P1=P0,即 P t = P 0 , t ≥ 0 P_t=P_0,t\ge 0 Pt=P0t0,则 P 0 P_0 P0是stationary的
    π ( v ) = d ( v ) / ( 2 m ) \pi(v)=d(v)/(2m) π(v)=d(v)/(2m),对每个v,d(v)固定,不随时间变化;当G为regular,即d(v)=d时, π \pi π为均匀分布。证明 π 为 平 稳 分 布 \pi为平稳分布 π
    - 平稳分布是唯一的
    - 平稳分布的存在性:well-behaved graph 总是存在
    - G非二分图(non-bipartite),则 t → ∞ t\to\infty t v t v_t vt的分布收敛于平稳分布
  • 时间可逆(time-reversibility)
    π ( i ) p i j = π ( j ) p j i \pi(i)p_{ij}=\pi(j)p_{ji} π(i)pij=π(j)pji π ( i ) p i j = d ( i ) / ( 2 m ) ∗ 1 / d ( i ) = 1 / ( 2 m ) \pi(i)p_{ij}=d(i)/(2m)*1/d(i)=1/(2m) π(i)pij=d(i)/(2m)1/d(i)=1/(2m),即沿着任意一条边转移的频率相等
    从边随机游走回到该边的步数期望值为2m,从节点i随机游走回到i的步数期望值是 1 / π ( i ) = 2 m / d ( i ) 1/\pi(i)=2m/d(i) 1/π(i)=2m/d(i),若G是regular的,return time则为n,即节点个数。
  • well-behaved graph
    - 不可约(irreducible)/strongly connected:每一个状态都可来自任意其它状态。图上任意两点可达。
    - 非周期(aperiodic):周期性是存在至少一个状态经过一个固定的时间段后连续返回;非周期的图所有的cycle边数的最大公约数为1
    - 不可约、非周期的Markov chain最大特征值为1且为单(重数为1),其他特征值绝对值均小于1
    - 故存在唯一平稳分布: π = 1 π = M T π \pi=1\pi=M^T\pi π=1π=MTπ
  • Markov chain 的特征值
    M M M为Markov chain,证明 M t M^t Mt为Markov chain, ( M T ) t x = λ t x (M^T)^tx=\lambda^t x (MT)tx=λtx,有限,因为 M i j ≤ 1 M_{ij}\le1 Mij1(概率),若存在 ∣ λ ∣ > 1 |\lambda|>1 λ>1则其趋于无穷,矛盾。证明见:线代随笔10-马尔科夫矩阵的性质与估计

2. Main parameters

  • access time or hitting time
    H ( i , j ) H(i, j) H(i,j) 从i到j步数期望值,不是对称的
    H ( i , j ) = ∑ t > 0 t p i j t H(i,j)=\sum\limits_{t>0} tp_{ij}^t H(i,j)=t>0tpijt

  • commute time
    κ ( i , j ) = H ( i , j ) + H ( j , i ) \kappa(i, j)=H(i,j)+H(j,i) κ(i,j)=H(i,j)+H(j,i),从i经j回到i的步数期望值,是对称的

  • cover time
    遍历所用步数期望值

  • mixing rate
    μ = lim ⁡ t → ∞ sup ⁡ max ⁡ ∣ p i j ( t ) − d j / ( 2 m ) ∣ 1 / t \mu=\lim\limits_{t\to\infty}\sup\max|p_{ij}^{(t)}- d_j/(2m)|^{1/t} μ=tlimsupmaxpij(t)dj/(2m)1/t,当G为非二分图, p i j ( t ) → d j / ( 2 m ) , t → ∞ p_{ij}^{(t)}\to d_j/(2m),t\to\infty pij(t)dj/(2m),t。衡量序列从初始分布经过随机游走(乘转移矩阵)到平稳分布的收敛速度。注意区分 p i j t , p i j ( t ) p_{ij}^t,p_{ij}^{(t)} pijt,pij(t)
    - mixing time

Symmetry and access time

【以下未完】

3. The eigenvalue connection

G不regular,M非对称,如何转化?
M = D A M=DA M=DA 得对称矩阵 N = D 1 / 2 A D 1 / 2 = D − 1 / 2 M D 1 / 2 N=D^{1/2}AD^{1/2}=D^{-1/2}MD^{1/2} N=D1/2AD1/2=D1/2MD1/2,特征值同M
特征分解得 N = ∑ k = 1 n λ k v k v k T N=\sum\limits_{k=1}^n\lambda_kv_kv_k^T N=k=1nλkvkvkT v k v_k vk为单位长度特征向量,注意区分 v k , v t v_k,v_t vk,vt
以证明随机游走收敛性【截图】

Spectra and access times

Spectra and generating functions

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值