联通图计数一般都是容斥。。。
首先设
F(M)
为至少
M
个联通块的图的个数,
根据stirling反演有:
G(M)=∑i=MN(−1)i−M[iM]F(i)
我们要求 G(1) ,就是
G(1)=∑i=1N(−1)i−1(i−1)!F(i)
也就是对于 M 个联通块的图,其贡献为
现在考虑计算 F(M) ,花费贝尔数的时间来枚举子集划分,也就是不同集合不能连边,相同集合随意。对于一条跨越不同集合边,把每个图看成一个二进制位,若该图存在这条边则为 1 ,否则为
复杂度
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
int s,n,c[11],sz;
bool e[65][11][11];
ll fac[11],lb[65],ans=0;
int read()
{
char ch;
for(ch=getchar();ch<'0'||ch>'1';ch=getchar());
return ch-'0';
}
void dfs(int v,int m)
{
if(v>n)
{
sz=0;
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
if(c[i]!=c[j])
{
ll tmp=0;
for(int k=1;k<=s;k++)
if(e[k][i][j]) tmp|=(1ll<<(k-1));
for(int k=1;k<=sz;k++)
if((tmp^lb[k])<tmp) tmp^=lb[k];
if(tmp) lb[++sz]=tmp;
}
ans+=fac[m]*(1ll<<(s-sz));
return;
}
for(int i=1;i<=m+1;i++)
c[v]=i,dfs(v+1,m+(i>m));
}
int main()
{
scanf("%d",&s);
char t[60];
scanf("%s",t+1);
int len=strlen(t+1),top=0;
for(;n*(n-1)/2<len;n++);
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
e[1][i][j]=t[++top]-'0';
for(int k=2;k<=s;k++)
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
e[k][i][j]=read();
fac[1]=1;
for(int i=2;i<=n;i++) fac[i]=fac[i-1]*(1-i);
dfs(1,0);
printf("%lld",ans);
return 0;
}