[JZOJ5745]幂 数论阶

首先考虑当 n n 有平方因子p2时,取 a=p a = p 就无解了,所以我们只考虑 μ2(n)=1 μ 2 ( n ) = 1 的情况。
考虑中国剩余定理,只要保证对于 n n 的每个因子pi满足对于所有 a a ,求最小的k,使得 anka(modpi) a n k ≡ a ( mod p i ) ,即 nk1(modpi1) n k ≡ 1 ( mod p i − 1 )
显然当 gcd(n,pi1)>1 gcd ( n , p i − 1 ) > 1 的时候无解,否则最小的 k k 就是求n (modpi1) ( mod p i − 1 ) 意义下的阶,那么 k|φ(pi1) k | φ ( p i − 1 ) ,暴力枚举 φ(pi1) φ ( p i − 1 ) 的约数判一下就可以了。
最后的答案就是 lcm{ki} lcm { k i }
代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define fs first
#define sc second
#define ll long long
#define vpli vector<pair<ll,int> >
using namespace std;
int pri[6]={2,3,7,61,10007,24251};
ll rd()
{
    return (rand()<<31)+rand();
}
ll mul(ll a,ll b,ll mod)
{
    a=(a>=mod?a%mod:a);
    b=(b>=mod?b%mod:b);
    ll tmp=(a*b-(ll)((long double)a/mod*b+1e-2)*mod);
    return tmp<0?tmp+mod:tmp;
}
ll gcd(ll x,ll y)
{
    ll t;
    if(x<y) t=x,x=y,y=t;
    while(y) t=x,x=y,y=t%y;
    return x;
}
ll lcm(ll x,ll y)
{
    return x/gcd(x,y)*y;
}
ll ksm(ll a,ll b,ll mod)
{
    ll r=1;
    for(;b;b>>=1)
    {
        if(b&1) r=mul(r,a,mod);
        a=mul(a,a,mod);
    }
    return r;
}
ll MR(ll n)
{
    ll r=n-1,s=0;
    while(!(r&1)) r>>=1,s++;
    for(int i=0;i<6;i++)
    {
        if(n==pri[i]) return 1;
        ll t=ksm(pri[i],r,n),u=t;
        for(int j=1;j<=s;j++)
        {
            t=mul(t,t,n);
            if(t==1&&u!=1&&u!=n-1) return 0;
            u=t;
        }
        if(t!=1) return 0;
    }
    return 1;
}
ll rho(ll n)
{
    ll a=rd()%n,b=a,c=rd()%n,k=1,d=1;
    for(ll i=1;d==1;i++)
    {
        b=(mul(b,b,n)+c)%n;
        d=gcd(a>b?a-b:b-a,n);
        if(i==k) k<<=1,a=b;
    }
    if(d==n) return rho(n);
    return d;
}
void solve(ll n,vpli &p)
{
    if(n<=1) return ; 
    if(MR(n)) 
    {
        for(int i=0;i<p.size();i++)
            if(p[i].fs==n) {p[i].sc++;return ;}
        p.push_back(make_pair(n,1));
        return ;
    }
    ll t=rho(n);
    solve(t,p),solve(n/t,p);
}
ll phi(ll x)
{
    vpli p;solve(x,p);
    ll re=x;
    for(int i=0;i<p.size();i++)
        re=re/p[i].fs*(p[i].fs-1);
    return re;  
}
ll qk(ll n,ll mod)
{
    vpli p; 
    ll k=phi(mod);      
    solve(k,p);
    for(int i=0;i<p.size();i++)
        while(p[i].sc&&ksm(n,k/p[i].fs,mod)==1) k/=p[i].fs,p[i].sc--;
    return k;
}
int main()
{
    srand(666623333);
    ll n,ans=1;
    vpli p;
    scanf("%lld",&n);
    solve(n,p);
    for(int i=0;i<p.size();i++)
        if(p[i].sc>1||gcd(n,p[i].fs-1)>1) {puts("-1");return 0;}    
    for(int i=0;i<p.size();i++)
        ans=lcm(ans,qk(n,p[i].fs-1));
    printf("%lld",ans);
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值