数论进阶总结

稍微进阶一些,比昨天难(除了类欧)

先说说欧拉函数

欧拉函数 φ ( n ) \varphi(n) φ(n)表示与n互质的正整数个数
显然,当 p p p为质数时, φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1

给一个定理: φ ( p a ) = p a − p a − 1 \varphi(p^a)=p^a-p^{a-1} φ(pa)=papa1

证明:
显然 gcd ⁡ ( x , p a ) = 1 \gcd(x,p^a)=1 gcd(x,pa)=1可以推出 gcd ⁡ ( x , p ) = 1 \gcd(x,p)=1 gcd(x,p)=1

[ 1 , p a ] [1,p^a] [1,pa]中,只有 gcd ⁡ ( p , k p ) ≠ 1 , k ∈ [ 1 , p a − 1 ] \gcd(p,kp)≠1,k \in [1,p^{a-1}] gcd(p,kp)̸=1,k[1,pa1]

则在 [ 1 , p a ] [1,p^a] [1,pa]中,有 p a − 1 p^{a-1} pa1个数和 p a p^a pa不互质

φ ( p a ) = p a − p a − 1 \varphi(p^a)=p^a-p^{a-1} φ(pa)=papa1

大家都知道欧拉函数是积性函数,那怎证明?

除了大力推公式,我提供一种新的方法:

观察下表:

1 m + 1 2 m + 1 . . . ( n − 1 ) m + 1 2 m + 2 2 m + 2 . . . ( n − 1 ) m + 2 . . . . . . . . . . . . r m + r 2 m + r . . . ( n − 1 ) m + r . . . . . . . . . . . . m 2 m 3 m . . . n m \begin{matrix} 1&m+1&2m+1&...&(n-1)m+1\\ 2&m+2&2m+2&...&(n-1)m+2\\ ...&...&...&&...\\ r&m+r&2m+r&...&(n-1)m+r\\ ...&...&...&&...\\ m&2m&3m&...&nm\\ \end{matrix} 12...r...mm+1m+2...m+r...2m2m+12m+2...2m+r...3m............(n1)m+1(n1)m+2...(n1)m+r...nm

gcd ⁡ ( r , m ) = d > 1 \gcd(r,m)=d>1 gcd(r,m)=d>1,则第 r r r行与 m n mn mn没有互质的元素(显然)

这是因为第 r r r行元素形式为 k m + r km+r km+r,而 d ∣ m , d ∣ r d|m,d|r dm,dr,所以 d ∣ ( k m + r ) d|(km+r) d(km+r)

gcd ⁡ ( r , m ) = 1 \gcd(r,m)=1 gcd(r,m)=1,则第 r r r行元素都与 m m m互质

假设 k 2 m + r ≡ k 2 m + r ( m o d   n ) k_2m+r ≡ k_2m+r(mod \ n) k2m+rk2m+r(mod n),则 ( k 1 − k 2 ) m ≡ 0 ( m o d   n ) (k_1-k_2)m ≡ 0(mod \ n) (k1k2)m0(mod n),得到 k 1 = k 2 k_1=k_2 k1=k2

所以第 r r r行元素模 n n n两两不同余,故 φ ( n ) \varphi(n) φ(n)个数与 n n n互质

满足 gcd ⁡ ( r , m ) = 1 \gcd(r,m)=1 gcd(r,m)=1的行号 r r r φ ( m ) \varphi(m) φ(m)个,故表中与nm互质的数有 φ ( n ) φ ( m ) \varphi(n)\varphi(m) φ(n)φ(m)

φ ( n m ) = φ ( n ) φ ( m ) \varphi(nm)=\varphi(n)\varphi(m) φ(nm)=φ(n)φ(m)

证明了欧拉函数的积性,加上 φ ( p a ) = p a − p a − 1 \varphi(p^a)=p^a-p^{a-1} φ(pa)=papa1 p p p为素数)

设n的质因子分解式为 ∏ p i q i \prod_{}{p_i}^{q_i} piqi,则 φ ( n ) = n ∏ p i − 1 p i \varphi(n)=n\prod_{}\frac{p_i-1}{p_i} φ(n)=npipi1

证明:

φ ( n ) = φ ( ∏ p i q i ) = ∏ φ ( p i q i ) = ∏ ( p i q i ) ( 1 − 1 p i ) = n ∏ ( 1 − 1 p i ) = n ∏ p i − 1 p i \varphi(n)=\varphi(\prod_{}{p_i}^{q_i})=\prod_{}\varphi({p_i}^{q_i})=\prod_{}(p_i^{q_i})(1-\frac{1}{p_i})=n\prod_{}(1-\frac{1}{p_i})=n\prod_{}\frac{p_i-1}{p_i} φ(n)=φ(piqi)=φ(piqi)=(piqi)(1pi1)=n(1pi1)=npipi1

欧拉函数还有一个重要的性质:

n = ∑ d ∣ n φ ( d ) n=\sum\limits_{d|n}\varphi(d) n=dnφ(d)

证明:

f ( n ) = ∑ d ∣ n φ ( d ) f(n)=\sum\limits_{d|n}\varphi(d) f(n)=dnφ(d)
f ( p i q i ) = ∑ e = 0 q i φ ( p i e ) = 1 + p i − 1 + . . . + p i q i = p i q i − 1 = p i q i f({p_i}^{q_i})=\sum\limits_{e=0}^{q_i}\varphi({p_i}^e)=1+p_i-1+...+{p_i}^{q_i}={p_i}^{q_i-1}={p_i}^{q_i} f(piqi)=e=0qiφ(pie)=1+pi1+...+piqi=piq

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值