若 c=2k c = 2 k , abc=a(bk)2 a b c = a ( b k ) 2 ;若 c=2k+1 c = 2 k + 1 , abc=(ab)(bk)2 a b c = ( a b ) ( b k ) 2 。所以我们只需要考虑 c≤3 c ≤ 3 的情况。
那么能表示成 ab2 a b 2 的很好求,就是 ∑n13a=1μ2(a)(⌊na−−√⌋−a) ∑ a = 1 n 1 3 μ 2 ( a ) ( ⌊ n a ⌋ − a ) 。现在考虑求只能被表示成 ab3 a b 3 的数的个数。
我们设 k k 是满足
的最大值,那么 ab3=(ab)b2=abk2(bk)2 a b 3 = ( a b ) b 2 = a b k 2 ( b k ) 2 ,也就是要满足 ab