「BZOJ5093」图的价值-NTT+第二类斯特林数

Description

“简单无向图”是指无重边、无自环的无向图(不一定连通)。

一个带标号的图的价值定义为每个点度数的 k k 次方的和。

给定n k k ,请计算所有n个点的带标号的简单无向图的价值之和。

因为答案很大,请对 998244353 998244353 取模输出。

Solution

对于每个点分别考虑贡献:

n×2n(n1)2(n1)i=0n1ikC(n1,i) n × 2 n ( n − 1 ) 2 − ( n − 1 ) ∑ i = 0 n − 1 i k C ( n − 1 , i )

考虑第二类斯特林数有这样一个性质

ik=j=0is(k,j)j!C(i,j) i k = ∑ j = 0 i s ( k , j ) j ! C ( i , j )

所以原式化为

i=0n1j=0is(k,j)j!C(i,j)C(n1,i) ∑ i = 0 n − 1 ∑ j = 0 i s ( k , j ) j ! C ( i , j ) C ( n − 1 , i )

枚举 j j

j=0n1s(k,j)j!i=0n1C(i,j)C(n1,i)

考虑 n1i=0C(i,j)C(n1,i)=C(n1,j)n1i=jC(n1,ij)=2n1jC(n1,j) ∑ i = 0 n − 1 C ( i , j ) C ( n − 1 , i ) = C ( n − 1 , j ) ∑ i = j n − 1 C ( n − 1 , i − j ) = 2 n − 1 − j C ( n − 1 , j )

所以原式化为

j=0n1s(k,j)j!2n1jC(n1,j) ∑ j = 0 n − 1 s ( k , j ) j ! 2 n − 1 − j C ( n − 1 , j )

j j 很大时,s(k,j) 0 0 ,所以只需要枚举到min(k,n1)即可。

#include <bits/stdc++.h>
using namespace std;

typedef long long lint;
const int mod = 998244353;
const int G = 3, Phi = mod - 1;
const int maxn = 530005;

int n, m, k;
int fac[maxn], ifac[maxn];
int L, R[maxn], A[maxn], B[maxn];

int Pow(int x, lint k)
{
    int res = 1;
    while (k) {
        if (k & 1) res = (lint)res * x % mod;
        x = (lint)x * x % mod; k >>= 1;
    }
    return res;
}

void NTT(int *a, int f)
{
    for (int i = 0; i < m; ++i)
        if (i < R[i]) swap(a[i], a[R[i]]);
    for (int i = 1; i < m; i <<= 1) {
        int wn = Pow(G, Phi / (i << 1)), t;
        if (f == -1) wn = Pow(wn, mod - 2);
        for (int j = 0; j < m; j += (i << 1)) {
            int w = 1;
            for (int k = 0; k < i; ++k, w = (lint)w * wn % mod) {
                t = (lint)a[j + i + k] * w % mod;
                a[j + i + k] = a[j + k] - t;
                if (a[j + i + k] < 0) a[j + i + k] += mod;
                a[j + k] = a[j + k] + t;
                if (a[j + k] >= mod) a[j + k] -= mod;
            }
        }
    }
}

void NTT(int *A, int *B)
{
    int i;
    for (i = m << 1, m = 1; m <= i; m <<= 1) ++L;
    for (int i = 0; i < m; ++i) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    NTT(A, 1); NTT(B, 1);
    for (int i = 0; i < m; ++i) A[i] = (lint) A[i] * B[i] % mod;
    NTT(A, -1);
    int inv = Pow(m, mod - 2);
    m = i >> 1;
    for (int i = 0; i <= m; ++i) A[i] = (lint)A[i] * inv % mod;
}

int main()
{
    freopen("graph.in", "r", stdin);
    freopen("graph.out", "w", stdout);

    scanf("%d%d", &n, &k); m = min(n - 1, k);

    fac[0] = 1;
    for (int i = 1; i <= m; ++i) fac[i] = (lint)fac[i - 1] * i % mod;
    ifac[m] = Pow(fac[m], mod - 2); 
    for (int i = m - 1; i >= 0; --i) ifac[i] = (lint)ifac[i + 1] * (i + 1) % mod;

    for (int i = 0; i <= m; ++i) {
        A[i] = i & 1 ? mod - ifac[i] : ifac[i];
        B[i] = (lint)Pow(i, k) * ifac[i] % mod;
    }

    NTT(A, B);

    int ans = 0, Inv = (mod + 1) / 2;
    for (int i = 0, sum = Pow(2, n - 1); i <= m; ++i) {
        ans += (lint)sum * A[i] % mod;
        if (ans >= mod) ans -= mod;
        sum = (lint)sum * Inv % mod * (n - 1 - i) % mod;
    }

    printf("%d\n", (lint)ans * n % mod * Pow(2, (lint)n * (n - 1) / 2 - n + 1) % mod);

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值