「BZOJ3771」Triple-生成函数+FFT

Decription

给定一个物品集合,每个物品有一个价值。可以在其中使用 1,2,3 1 , 2 , 3 个物品,求凑成的物品总价值方案数。

n,ai40000 n , a i ⩽ 40000

Solution

ai a i 表示取一个物品价值和为 i i 的方案数,bi,ci分别为两个,三个物品的方案数。

对于每一个出现的价值,就在其对应的生成函数上的位置 +1 + 1

通过容斥不难得到以下式子

ans=ai+(ai×aibi)2+ai×ai×aibi×ai×3+ci×26 a n s = ∑ a i + ( a i × a i − b i ) 2 + a i × a i × a i − b i × a i × 3 + c i × 2 6

#include <bits/stdc++.h>
using namespace std;

const int maxn = 40005, maxm = 131075; 
int n, maxa; 

inline int gi()
{
    char c = getchar();
    while (c < '0' || c > '9') c = getchar();
    int sum = 0;
    while ('0' <= c && c <= '9') sum = sum * 10 + c - 48, c = getchar();
    return sum;
}

typedef complex<double> cpx;
const double pi = acos(-1);
cpx a[maxm], b[maxm], c[maxm], ans[maxm];

int m, L, R[maxm];
void fft(cpx *a, int f)
{
    for (int i = 0; i < m; ++i)
        if (i < R[i]) swap(a[i], a[R[i]]);
    for (int i = 1; i < m; i <<= 1) {
        cpx wn(cos(pi / i), sin(f * pi / i)), t;
        for (int j = 0; j < m; j += (i << 1)) {
            cpx w(1, 0);
            for (int k = 0; k < i; ++k, w *= wn) {
                t = w * a[j + i + k];
                a[j + i + k] = a[j + k] - t;
                a[j + k] = a[j + k] + t;
            }
        }
    }
}

int main()
{
    n = gi();
    for (int x, i = 1; i <= n; ++i) {
        x = gi(); maxa = max(maxa, x);
        a[x] = 1; b[x + x] = 1; c[x + x + x] = 1;
    }
    n = maxa * 3;

    for (m = 1; m <= n; m <<= 1) ++L;
    for (int i = 0; i < m; ++i) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
    fft(a, 1); fft(b, 1); fft(c, 1);
    for (int i = 0; i < m; ++i) {
        ans[i] += (a[i] * a[i] * a[i] - a[i] * b[i] * 3. + c[i] * 2.) / 6.;
        ans[i] += (a[i] * a[i] - b[i]) / 2.;
        ans[i] += a[i];
    }
    fft(ans, -1);

    for (int i = 0; i < m; ++i) {
        int x = (int)(ans[i].real() / m + 0.5);
        if (x) printf("%d %d\n", i, x);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值