BZOJ 4555 求和(生成函数+FFT)

25 篇文章 0 订阅
20 篇文章 0 订阅

Description

在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心。

现在他想计算这样一个函数的值: f(n)=i=0nj=0nS(i,j)×2j×j!

S(i,j) 表示第二类斯特林数,递推公式为:

S(i,j)=jS(i1,j)+S(i1,j1),1ji1

边界条件为: S(i,i)=1(i0),S(i,0)=0(i1)

你能帮帮他吗?

Input

输入只有一个正整数 n (1n100000)

Output

输出 f(n) 。由于结果会很大,输出 f(n) 998244353(7×17×223+1) 取模的结果即可

Sample Input

3

Sample Output

87

Solution

g(i)=j=0nS(i,j)×2j×j! ,则由第二类斯特林数的定义知 g(i) 的意义是将 i 个数分到j个不同的非空集合,且每多一个集合其对答案的贡献就乘 2 ,考虑第一个集合中元素个数为k,则有 g(i)=k=1i2Ckig(ik)

化简得到卷积形式 g(i)i!=j=1ig(ij)(ij)!2j!

F(x)=i=0g(i)i!xi,G(x)=i=12i!xi ,则有 F(x)=F(x)G(x)+1 ,故有 F(x)=11G(x)

多项式求逆得到 F(x) ,进而得到 g(0),...,g(n) ,得到答案 ans=i=0ng(i)

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define maxn 100005
#define maxfft 262144+5
#define mod 998244353
const double pi=acos(-1.0);
struct cp 
{
    double a,b;
    cp operator +(const cp &o)const {return (cp){a+o.a,b+o.b};}
    cp operator -(const cp &o)const {return (cp){a-o.a,b-o.b};}
    cp operator *(const cp &o)const {return (cp){a*o.a-b*o.b,b*o.a+a*o.b};}
    cp operator *(const double &o)const {return (cp){a*o,b*o};}
    cp operator !() const{return (cp){a,-b};}
}w[maxfft];
int pos[maxfft];
void fft_init(int len)
{
    int j=0;
    while((1<<j)<len)j++;
    j--;
    for(int i=0;i<len;i++)
        pos[i]=pos[i>>1]>>1|((i&1)<<j);
}
void fft(cp *x,int len,int sta)
{
    for(int i=0;i<len;i++)
        if(i<pos[i])swap(x[i],x[pos[i]]);
    w[0]=(cp){1,0};
    for(unsigned i=2;i<=len;i<<=1)
    {
        cp g=(cp){cos(2*pi/i),sin(2*pi/i)*sta};
        for(int j=i>>1;j>=0;j-=2)w[j]=w[j>>1];
        for(int j=1;j<i>>1;j+=2)w[j]=w[j-1]*g;
        for(int j=0;j<len;j+=i)
        {
            cp *a=x+j,*b=a+(i>>1);
            for(int l=0;l<i>>1;l++)
            {
                cp o=b[l]*w[l];
                b[l]=a[l]-o;
                a[l]=a[l]+o;
            }
        }
    }
    if(sta==-1)for(int i=0;i<len;i++)x[i].a/=len,x[i].b/=len;
}
cp x[maxfft],y[maxfft],z[maxfft];
int temp[maxfft];
void FFT(int *a,int *b,int n,int m,int *c)
{
    if(n<=100&&m<=100||min(n,m)<=5)
    {
        for(int i=0;i<n+m-1;i++)temp[i]=0;
        for(int i=0;i<n;i++)
            for(int j=0;j<m;j++)
            {
                temp[i+j]+=(ll)a[i]*b[j]%mod;
                if(temp[i+j]>=mod)temp[i+j]-=mod;
            }
        for(int i=0;i<n+m-1;i++)c[i]=temp[i];
        return ;
    }
    int len=1;
    while(len<n+m)len<<=1;
    fft_init(len);
    for(int i=0;i<len;i++)
    {
        int aa=i<n?a[i]:0,bb=i<m?b[i]:0;
        x[i]=(cp){(aa>>15),(aa&32767)},y[i]=(cp){(bb>>15),(bb&32767)};
    }
    fft(x,len,1),fft(y,len,1);
    for(int i=0;i<len;i++)
    {
        int j=len-1&len-i;
        z[i]=((x[i]+!x[j])*(y[i]-!y[j])+(x[i]-!x[j])*(y[i]+!y[j]))*(cp){0,-0.25};
    }
    fft(z,len,-1);
    for(int i=0;i<n+m-1;i++)
    {
        ll ta=(ll)(z[i].a+0.5)%mod;
        ta=(ta<<15)%mod;
        c[i]=ta;
    }
    for(int i=0;i<len;i++)
    {
        int j=len-1&len-i;
        z[i]=(x[i]-!x[j])*(y[i]-!y[j])*(cp){-0.25,0}+(x[i]+!x[j])*(y[i]+!y[j])*(cp){0,0.25};
    }
    fft(z,len,-1);
    for(int i=0;i<n+m-1;i++)
    {
        ll ta=(ll)(z[i].a+0.5)%mod,tb=(ll)(z[i].b+0.5)%mod;
        ta=(ta+(tb<<30))%mod;
        c[i]=(c[i]+ta)%mod;
    }
}
int inv[maxn],finv[maxn],fact[maxn];
void init(int n=100001)
{
    inv[1]=1;
    for(int i=2;i<=n;i++)inv[i]=mod-(ll)(mod/i)*inv[mod%i]%mod;
    finv[0]=1;
    for(int i=1;i<=n;i++)finv[i]=(ll)finv[i-1]*inv[i]%mod;
    fact[0]=1;
    for(int i=1;i<=n;i++)fact[i]=(ll)fact[i-1]*i%mod;
}
int temp1[maxfft];
void Poly_Inv(int *poly,int n,int *ans)
{
    ans[0]=inv[poly[0]];
    for(int i=2;i<=n;i<<=1)
    {
        FFT(poly,ans,i,i/2,temp1);
        FFT(ans,temp1+i/2,i/2,i/2,temp1);
        for(int j=0;j<i/2;j++)ans[j+i/2]=temp1[j]==0?0:mod-temp1[j];
    }
}
int f[maxfft],g[maxfft];
int main()
{
    init();
    int n;
    while(~scanf("%d",&n))
    {
        int len=1;
        while(len<=n)len<<=1;
        g[0]=1;
        for(int i=1;i<=n;i++)g[i]=(mod-(finv[i]<<1)%mod)%mod;
        for(int i=n+1;i<len;i++)g[i]=0;
        Poly_Inv(g,len,f);
        int ans=0;
        for(int i=0;i<=n;i++)
        {
            ans+=(ll)f[i]*fact[i]%mod;
            if(ans>=mod)ans-=mod;
        }
        printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值