使用CUBLAS的一些小例子

1. 矩阵相乘再加 C = a*A*B + b*C

#include "cuda_runtime.h"
#include "cublas_v2.h"

#include <time.h>
#include <iostream>

using namespace std;

int const M = 6;
int const N = 10;

int main()
{
cublasStatus_t status;

//Host memory malloc
float *h_A = (float*)malloc(N*M*sizeof(float));
float *h_B = (float*)malloc(N*M*sizeof(float));
float *h_C = (float*)malloc(M*M*sizeof(float));
float *h_C_cpu = (float*)malloc(M*M*sizeof(float));
memset(h_C_cpu,0,M*M*sizeof(float));

//Initialize and print
for (int i=0; i<M*N; i++)
{
h_A[i] = (float)(rand()%10+1);
h_B[i] = (float)(rand()%10+1);
}
cout << "Matrix A is:" << endl;
for (int i=0; i<M*N; i++)
{
cout << h_A[i] << " ";
if ((i+1)%N == 0)
{
cout << endl;
}
}
cout << endl;
cout << "Matrix B is:" << endl;
for (int i=0; i<M*N; i++)
{
cout << h_B[i] << " ";
if ((i+1)%M == 0)
{
cout << endl;
}
}
cout << endl;

//CPU caculate
for(int i = 0; i<M; i++)
{
for(int j=0; j<M; j++)
{
for(int k=0; k<N; k++)
{
h_C_cpu[i*M+j] = h_C_cpu[i*M+j]+h_A[i*N+k]*h_B[k*M+j]*1 + 0;
}
}
}
cout << "The result from CPU is:" << endl;
for (int i=0; i<M*M; i++)
{
cout << h_C_cpu[i] << " ";
if ((i+1)%M == 0)
{
cout << endl;
}
}
cout << endl;
//Create handle;
cublasHandle_t handle;
status = cublasCreate(&handle);
if (status != CUBLAS_STATUS_SUCCESS)
{
if (status == CUBLAS_STATUS_NOT_INITIALIZED)
{
cout << "Fail to get an instance of blas object! Check whether you have free the handle!" << endl;
}
getchar();
return EXIT_FAILURE;
}

//Device memory malloc and initialize
float *d_A, *d_B, *d_C;
cudaMalloc((void**)&d_A, N*M*sizeof(float));
cudaMalloc((void**)&d_B, N*M*sizeof(float));
cudaMalloc((void**)&d_C, M*M*sizeof(float));

cublasSetVector(N*M, sizeof(float), h_A, 1, d_A, 1);
cublasSetVector(N*M, sizeof(float), h_B, 1, d_B, 1);

//Call gpu operation
float a = 1;
float b = 0;
const float *ca = &a;
const float *cb = &b;

cublasSgemm(
handle,
CUBLAS_OP_T,
CUBLAS_OP_T,
M,
M,
N,
ca,
d_A,
N,
d_B,
M,
cb,
d_C,
M
);
cublasGetVector(M*M, sizeof(float), d_C, 1, h_C, 1);

cout << "The result from GPU is:" << endl;
for (int i=0; i<M; i++)
{
for(int j=0; j<M; j++)
{
cout << h_C[j*M + i] << " ";
}
cout << endl;
}

//Cleaning...
free(h_A);
free(h_B);
free(h_C);
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);

cublasDestroy(handle);

return 0;
}

2.更规范的一个例子，由SDK中的例子改编，与1类似，比较了CPU与GPU运算效率：

/*
*
* NOTICE TO USER:
*
* This source code is subject to NVIDIA ownership rights under U.S. and
* international Copyright laws.  Users and possessors of this source code
* are hereby granted a nonexclusive, royalty-free license to use this code
* in individual and commercial software.
*
* NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE
* CODE FOR ANY PURPOSE.  IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR
* IMPLIED WARRANTY OF ANY KIND.  NVIDIA DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
* IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL,
* OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
* OF USE, DATA OR PROFITS,  WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION,  ARISING OUT OF OR IN CONNECTION WITH THE USE
* OR PERFORMANCE OF THIS SOURCE CODE.
*
* U.S. Government End Users.   This source code is a "commercial item" as
* that term is defined at  48 C.F.R. 2.101 (OCT 1995), consisting  of
* "commercial computer  software"  and "commercial computer software
* documentation" as such terms are  used in 48 C.F.R. 12.212 (SEPT 1995)
* and is provided to the U.S. Government only as a commercial end item.
* Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through
* 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the
* source code with only those rights set forth herein.
*
* Any use of this source code in individual and commercial software must
* include, in the user documentation and internal comments to the code,
* the above Disclaimer and U.S. Government End Users Notice.
*/

/* This example demonstrates how to use the CUBLAS library
* by scaling an array of floating-point values on the device
* and comparing the result to the same operation performed
* on the host.
*/

/* Includes, system */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include "time.h"
/* Includes, cuda */
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <helper_cuda.h>
using namespace std;
/* Matrix size */
#define N  (600)

/* Host implementation of a simple version of sgemm */
static void simple_sgemm(int n, float alpha, const float *A, const float *B,
float beta, float *C)
{
int i;
int j;
int k;

for (i = 0; i < n; ++i)
{
for (j = 0; j < n; ++j)
{
float prod = 0;

for (k = 0; k < n; ++k)
{
prod += A[k * n + i] * B[j * n + k];
}

C[j * n + i] = alpha * prod + beta * C[j * n + i];
}
}
}

/* Main */
int main(int argc, char **argv)
{
cublasStatus_t status;
float *h_A;
float *h_B;
float *h_C;
float *h_C_ref;
float *d_A = 0;
float *d_B = 0;
float *d_C = 0;
float alpha = 1.0f;
float beta = 0.0f;
int n2 = N * N;
int i;
float error_norm;
float ref_norm;
float diff;
cublasHandle_t handle;

clock_t cuStart,cuFinish;
clock_t start,finish;

int dev = findCudaDevice(argc, (const char **) argv);

if (dev == -1)
{
return EXIT_FAILURE;
}

/* Initialize CUBLAS */
printf("simpleCUBLAS test running..\n");

status = cublasCreate(&handle);

if (status != CUBLAS_STATUS_SUCCESS)
{
fprintf(stderr, "!!!! CUBLAS initialization error\n");
return EXIT_FAILURE;
}

/* Allocate host memory for the matrices */
h_A = (float *)malloc(n2 * sizeof(h_A[0]));

if (h_A == 0)
{
fprintf(stderr, "!!!! host memory allocation error (A)\n");
return EXIT_FAILURE;
}

h_B = (float *)malloc(n2 * sizeof(h_B[0]));

if (h_B == 0)
{
fprintf(stderr, "!!!! host memory allocation error (B)\n");
return EXIT_FAILURE;
}

h_C = (float *)malloc(n2 * sizeof(h_C[0]));

if (h_C == 0)
{
fprintf(stderr, "!!!! host memory allocation error (C)\n");
return EXIT_FAILURE;
}

/* Fill the matrices with test data */
for (i = 0; i < n2; i++)
{
h_A[i] = rand() / (float)RAND_MAX;
h_B[i] = rand() / (float)RAND_MAX;
h_C[i] = rand() / (float)RAND_MAX;
}
cuStart = clock();
/* Allocate device memory for the matrices */
if (cudaMalloc((void **)&d_A, n2 * sizeof(d_A[0])) != cudaSuccess)
{
fprintf(stderr, "!!!! device memory allocation error (allocate A)\n");
return EXIT_FAILURE;
}

if (cudaMalloc((void **)&d_B, n2 * sizeof(d_B[0])) != cudaSuccess)
{
fprintf(stderr, "!!!! device memory allocation error (allocate B)\n");
return EXIT_FAILURE;
}

if (cudaMalloc((void **)&d_C, n2 * sizeof(d_C[0])) != cudaSuccess)
{
fprintf(stderr, "!!!! device memory allocation error (allocate C)\n");
return EXIT_FAILURE;
}

/* Initialize the device matrices with the host matrices */
status = cublasSetVector(n2, sizeof(h_A[0]), h_A, 1, d_A, 1);

if (status != CUBLAS_STATUS_SUCCESS)
{
fprintf(stderr, "!!!! device access error (write A)\n");
return EXIT_FAILURE;
}

status = cublasSetVector(n2, sizeof(h_B[0]), h_B, 1, d_B, 1);

if (status != CUBLAS_STATUS_SUCCESS)
{
fprintf(stderr, "!!!! device access error (write B)\n");
return EXIT_FAILURE;
}

status = cublasSetVector(n2, sizeof(h_C[0]), h_C, 1, d_C, 1);

if (status != CUBLAS_STATUS_SUCCESS)
{
fprintf(stderr, "!!!! device access error (write C)\n");
return EXIT_FAILURE;
}

/* Performs operation using cublas */
status = cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, N, N, N, &alpha, d_A, N, d_B, N, &beta, d_C, N);

if (status != CUBLAS_STATUS_SUCCESS)
{
fprintf(stderr, "!!!! kernel execution error.\n");
return EXIT_FAILURE;
}

/* Allocate host memory for reading back the result from device memory */
h_C_ref = (float *)malloc(n2 * sizeof(h_C[0]));

if (h_C_ref == 0)
{
fprintf(stderr, "!!!! host memory allocation error (C)\n");
return EXIT_FAILURE;
}

/* Read the result back */
status = cublasGetVector(n2, sizeof(h_C[0]), d_C, 1, h_C_ref, 1);

if (status != CUBLAS_STATUS_SUCCESS)
{
fprintf(stderr, "!!!! device access error (read C)\n");
return EXIT_FAILURE;
}

cuFinish = clock();

start = clock();
/* Performs operation using plain C code */
simple_sgemm(N, alpha, h_A, h_B, beta, h_C);
finish = clock();

cout<<"GPU TIME:"<<(double)(cuFinish - cuStart)/CLOCKS_PER_SEC<<endl;
cout<<"CPU TIME:"<<(double)(finish - start)/CLOCKS_PER_SEC<<endl;

/* Check result against reference */
error_norm = 0;
ref_norm = 0;

for (i = 0; i < n2; ++i)
{
diff = h_C_ref[i] - h_C[i];
error_norm += diff * diff;
ref_norm += h_C_ref[i] * h_C_ref[i];
}

error_norm = (float)sqrt((double)error_norm);
ref_norm = (float)sqrt((double)ref_norm);
std::cout<<error_norm<<"\t"<<ref_norm<<std::endl;

if (fabs(ref_norm) < 1e-7)
{
fprintf(stderr, "!!!! reference norm is 0\n");
return EXIT_FAILURE;
}

/* Memory clean up */
free(h_A);
free(h_B);
free(h_C);
free(h_C_ref);

if (cudaFree(d_A) != cudaSuccess)
{
fprintf(stderr, "!!!! memory free error (A)\n");
return EXIT_FAILURE;
}

if (cudaFree(d_B) != cudaSuccess)
{
fprintf(stderr, "!!!! memory free error (B)\n");
return EXIT_FAILURE;
}

if (cudaFree(d_C) != cudaSuccess)
{
fprintf(stderr, "!!!! memory free error (C)\n");
return EXIT_FAILURE;
}

/* Shutdown */
status = cublasDestroy(handle);

if (status != CUBLAS_STATUS_SUCCESS)
{
fprintf(stderr, "!!!! shutdown error (A)\n");
return EXIT_FAILURE;
}

if (error_norm / ref_norm < 1e-6f)
{
printf("simpleCUBLAS test passed.\n");
exit(EXIT_SUCCESS);
}
else
{
printf("simpleCUBLAS test failed.\n");
exit(EXIT_FAILURE);
}
}