对比
python中random.sample()方法可以随机地从指定列表中提取出N个不同的元素,列表的维数没有限制。
有文章指出:在实践中发现,当N的值比较大的时候,该方法执行速度很慢。可以用numpy random模块中的choice方法来提升随机提取的效率。
(有问题,从该文章看不出来random.sample方法比choice方法慢多少,我自己仿真倒是发现random.sample方法比choice方法快的多,后面会举例说明)
numpy.random.choice() 对抽样对象有要求,必须是整数或者一维数组(列表),不能对超过一维的数据进行抽样,这是其缺点。
random.sample() 和 numpy.random.choice() 的优点都是可以指定抽样的个数,一次性从列表中不重复地抽样出指定个数的元素,其中 random.sample()默认就是不重复抽样(不放回的抽样),而numpy.random.choice()默认是可以重复抽样,要想不重复地抽样,需要设置replace参数为False,用法如下:
补充
前面说random.samp