513. 找树左下角的值(题目链接:力扣)
思路:典型的二叉树便利题,可以考录用递归或者迭代,递归的话就是正常的前序遍历或者中序遍历,但是都需要定义一个全局变量记录深度,当每第一次达到最大深度时(遍历到叶子节点的时候)记录该节点的值。迭代就是用层序便利了,每次拿出每层第一个节点的值记录下来,当层序遍历完,最后一次赋的值也就是数左下角的值了。
struct TreeNode{
int val;
TreeNode* left;
TreeNode* right;
TreeNode(): val(0), left(NULL), right(NULL){}
}
int depth = 0;
int result = 0;
void getDepth(TreeNode* root, int tmpDepth){
if(root->left == NULL && root->right == NULL){
if(tmpDepth > depth){
result = root->val;
depth = tmpDepth;
}
}
if(root->left){
getDepth(root->left, tmpDepth + 1);
}
if(root->right){
getDepth(root->right, tmpDepth + 1);
}
}
int findBottomLeftValue(TreeNode* root) {
getDepth(root, 1);
return result;
}
int findBottomLeftValue(TreeNode* root) {
int result = 0;
queue<TreeNode*> que;
que.push(root);
while(!que.empty()){
TreeNode* node = que.front();
que.pop();
result = node->val;
int size = que.size();
if(node->left) que.push(node->left);
if(node->right) que.push(node->right);
for(int i=0; i<size; i++){
node = que.front();
que.pop();
if(node->left) que.push(node->left);
if(node->right) que.push(node->right);
}
}
return result;
}
112. 路径总和(题目链接:力扣)
思路:典型的回溯法,首先讲递归的做法,每次迭代要传给子树的参数包括节点指针、到本节点为止的值的和,遍历到叶子结点时进行判断。(这种做法也可以不需要传num,直接每次吧targetSum减去本节点的值再传给子树,这样可以少一个参数,而且也不用另外写一个函数)
struct TreeNode{
int val;
TreeNode* left;
TreeNode* right;
TreeNode(): val(0), left(NULL), right(NULL){}
}
bool flag = false;
void traversal(TreeNode* root, int num, int targetSum){
if(root->left == NULL && root->right == NULL){
if(num + root->val == targetSum) flag = true;
}
if(root->left) traversal(root->left, root->val + num, targetSum);
if(root->right) traversal(root->right, root->val + num, targetSum);
}
bool hasPathSum(TreeNode* root, int targetSum) {
if(root == NULL) return false;
traversal(root, 0, targetSum);
return flag;
}
第二种迭代的做法,其实有点画蛇添足,比递归做法要复杂不少,但也算锻炼对树的遍历算法练习。因为节点指针和暂时和值必不可少,所以需要往stack里面push进pair<TreeNode*, int>才行,然后还是碰到节点指针进行判断。
bool hasPathSum(TreeNode* root, int targetSum) {
if(root == NULL) return false;
stack<pair<TreeNode*, int>> st;
st.push(pair<TreeNode*, int>(root, 0));
while(!st.empty()){
pair<TreeNode*, int> node = st.top();
st.pop();
if(node.first->left == NULL && node.first->right == NULL && node.second + node.first->val == targetSum) return true;
if(node.first->right) st.push(pair<TreeNode*, int>(node.first->right, node.second + node.first->val));
if(node.first->left) st.push(pair<TreeNode*, int>(node.first->left, node.second + node.first->val));
}
}
leetcode上还有一道求路径和的题和这个差不多力扣
106. 从中序与后序遍历序列构造二叉树(题目链接:力扣)
思路:又是一道经典的二叉树构造题,注意前后序遍历和中序遍历的规律即可。(tips:如果用到数组做形参,就可以在函数体内不再构造新数组)
TreeNode* traversal(vector<int>& inOrder, int inStart, int inEnd, vector<int>& postOrder, int postStart, int postEnd){
int size = inEnd - inStart;
if(size == 0) return NULL;
TreeNode* root = new TreeNode(postOrder[postEnd - 1]);
if(size == 1) return root;
int rootIndex;
for(rootIndex=inStart; rootIndex<inEnd; rootIndex++){
if(inOrder[rootIndex] == root->val) break;
}
root->left = traversal(inOrder, inStart, rootIndex, postOrder, postStart, postStart+rootIndex-inStart);
root->right = traversal(inOrder, rootIndex+1, inEnd, postOrder, postStart+rootIndex-inStart, postEnd-1);
return root;
}
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());
}