代码随想录算法训练营day49 | LeetCode 121. 买卖股票的最佳时机 122. 买卖股票的最佳时机 II

两篇文章介绍了如何使用动态规划解决股票买卖问题,第一题允许一次交易,第二题允许多次交易。通过定义二维dp数组跟踪持有和不持有股票的状态,计算每个节点的最大收益。
摘要由CSDN通过智能技术生成

121. 买卖股票的最佳时机(题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

思路:定义一个二维dp数组,第二维长度为2,用来记录到每个节点时,持有股票或不持有股票情况下手里的现金。

int maxProfit(vector<int>& prices) {
    int size = prices.size();
    if(size==1) return 0;
    vector<vector<int>> dp(size, vector<int>(2, 0));
    dp[0][0] = -prices[0];
    dp[0][1] = 0;
    for(int i=1; i<size; i++){
        dp[i][0] = max(dp[i-1][0], -prices[i]);
        dp[i][1] = max(dp[i-1][1], prices[i]+dp[i-1][0]);
    }
    return dp[size-1][1];
}

122. 买卖股票的最佳时机 II(题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

思路:和上题类似,区别在于股票可以买卖多次,因此计算某个节点持有股票或者不持有股票时都要把本节点和以往结果做比较。例如对dp[i][0]进行赋值时,就要考虑是保持以往的持有数据好,还是在以往不持有股票的情况下购买此次的股票好。

int maxProfit(vector<int>& prices) {
    int size = prices.size();
    if(size==1) return 0;
    vector<vector<int>> dp(size, vector<int>(2, 0));
    dp[0][0] = -prices[0];
    dp[0][1] = 0;
    for(int i=1; i<size; i++){
        dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices[i]);
        dp[i][1] = max(dp[i-1][0]+prices[i], dp[i-1][1]);
    }
    return dp[size-1][1];
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_porter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值