题意:
中文
思路:
改下模板中的匹配规则
代码:
#include <bits/stdc++.h>
using namespace std;
const int MAXN=200000;
struct Manacher{
int Ma[MAXN*2];
int Mp[MAXN*2];
int Mx[MAXN*2];
int len;
double ave;
int l;
int ans;
void manachar(int s[],int n){
l=0;ans=0;
len=n;
Ma[l++]=1;
Ma[l++]=2;
for(int i=0; i<len; i++)
{
Ma[l++]=s[i];
Ma[l++]=2;
}
Ma[l]=0;
int mx=0,id=0;
for(int i=0; i<l; i++)
{
ave++;
Mp[i]=mx>i?min(Mp[2*id-i],mx-i):1;
while(Ma[i+Mp[i]]==Ma[i-Mp[i]]){
if(Ma[i+Mp[i]]!=2&&Ma[i-Mp[i]]>Ma[i-Mp[i]+2]) break;
Mp[i]++;
ave++;
}
if(i+Mp[i]>mx)
{
mx=i+Mp[i];
id=i;
}
Mx[i]=mx;
ans=max(ans,Mp[i]-1);
}
ave/=len;
}
void debug(){
printf("id: ");
for(int i=0;i<l;i++)
printf("%4d",i);
printf("\n");
printf("char: ");
for(int i=0;i<l;i++)
printf("%d ",Ma[i]);
printf("\n");
printf("Mx: ");
for(int i=0;i<l;i++)
printf("%4d",Mx[i]);
printf("\n");
printf("Mp: ");
for(int i=0;i<l;i++)
printf("%4d",Mp[i]);
printf("\n");
printf("ave: %lf",ave);
printf("\n");
}
};
Manacher man;
int buf[MAXN];
int main(){
ios::sync_with_stdio(false);
int T;
cin>>T;
while(T--){
int n;
cin>>n;
for(int i=0;i<n;i++)
cin>>buf[i];
man.manachar(buf,n);
cout<<man.ans<<endl;
}
}
吉哥又想出了一个新的完美队形游戏!
假设有n个人按顺序站在他的面前,他们的身高分别是h[1], h[2] ... h[n],吉哥希望从中挑出一些人,让这些人形成一个新的队形,新的队形若满足以下三点要求,则就是新的完美队形:
1、挑出的人保持原队形的相对顺序不变,且必须都是在原队形中连续的;
2、左右对称,假设有m个人形成新的队形,则第1个人和第m个人身高相同,第2个人和第m-1个人身高相同,依此类推,当然如果m是奇数,中间那个人可以任意;
3、从左到中间那个人,身高需保证不下降,如果用H表示新队形的高度,则H[1] <= H[2] <= H[3] .... <= H[mid]。
现在吉哥想知道:最多能选出多少人组成新的完美队形呢?
假设有n个人按顺序站在他的面前,他们的身高分别是h[1], h[2] ... h[n],吉哥希望从中挑出一些人,让这些人形成一个新的队形,新的队形若满足以下三点要求,则就是新的完美队形:
1、挑出的人保持原队形的相对顺序不变,且必须都是在原队形中连续的;
2、左右对称,假设有m个人形成新的队形,则第1个人和第m个人身高相同,第2个人和第m-1个人身高相同,依此类推,当然如果m是奇数,中间那个人可以任意;
3、从左到中间那个人,身高需保证不下降,如果用H表示新队形的高度,则H[1] <= H[2] <= H[3] .... <= H[mid]。
现在吉哥想知道:最多能选出多少人组成新的完美队形呢?
每组数据首先是一个整数n(1 <= n <= 100000),表示原先队形的人数,接下来一行输入n个整数,表示原队形从左到右站的人的身高(50 <= h <= 250,不排除特别矮小和高大的)。
2 3 51 52 51 4 51 52 52 51
3 4