题目描述
牛牛最近迷上了一种叫斗地主的扑克游戏。斗地主是一种使用黑桃、红心、梅花、方片的A到K加上大小王的共54张牌来进行的扑克牌游戏。在斗地主中,牌从小到大排列如下:3,4,5,6,7,8,9,10,J,Q,K,A,2,小王,大王,而花色并不对牌的大小产生影响。每一局游戏中,一副手牌由n张牌组成。游戏者每次可以根据规定的牌型进行出牌,首先打光自己的手牌一方取得游戏的胜利。
现在,牛牛只想知道,对于自己的若干组手牌,分别最少需要多少次出牌可以将它们打光。请你帮他解决这个问题。
需要注意的是,本题中游戏者每次可以出手的牌型与一般的斗地主相似而略有不同。具体规则如下:
输入格式:
第一行包含用空格隔开的2个正整数T和n,表示手牌的组数以及每组手牌的张数。
接下来T组数据,每组数据n行,每行一个非负整数对aibi表示一张牌,其中ai示牌的数码,bi表示牌的花色,中间用空格隔开。特别的,我们用1来表示数码A,11表示数码J,12表示数码Q,13表示数码K;黑桃、红心、梅花、方片分别用1-4来表示;小王的表示方法为01,大王的表示方法为02。
输出格式:
共T行,每行一个整数,表示打光第i手牌的最少次数。
数据范围:
对于100%的数据,T<=100 , n<=23
数据保证:所有的手牌都是随机生成的。
难题蒟蒻只能看题解写代码…
没想到是个搜索题!加了一点贪心,怪不得数据那么小……
不过想明白了代码不是很难写。
把余下的牌单打完(不出顺子),尝试更新ans, 然后枚举每一种出顺子的情况,继续想下搜素…
传递一个参数x,表示出牌次数,如果x>ans就返回,虽然就加了这一个剪枝,但比原来快到不知道哪里去了。
很重要的一点就是“数据保证随机”,所以一种牌出现四张以上并且不出顺子的概率极小,对于冲击省一的咸鱼来说当做不存在好了。
上代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int a[15]={0};
int Ans[110];
int ans;
void dfs(int x)
{
if(x>ans) return;
int b1,b2,b3,b4;
b1=b2=b3=b4=0;
for(int i=1;i<=14;i++)
{
if(a[i]==1) b1++; //统计单牌
if(a[i]==2) b2++; //统计对子
}
for(int i=1;i<=14;i++) //枚举四张牌的情况
{
if(a[i]==4)
{
b4++;
if(b1>=2) b1-=2;
else if(b2>=2) b2-=2;
else if(b2>=1) b2--;
}
}
for(int i=1;i<=14;i++) //枚举三张牌
{
if(a[i]==3)
{
b3++;
if(b1>=1) b1--;
else if(b2>=1) b2--;
}
}
ans=min(ans,x+b1+b2+b3+b4); //尝试更新答案
int j;
for(int i=1;i<=8;i++) //单顺子
{
for(j=i;j<=12;j++)
{
if(a[j]>=1) a[j]--;
else break;
if(j-i>=4) dfs(x+1);
}
j--; //此时j之前没有被打出
while(j>=i) a[j--]++; //回溯
}
for(int i=1;i<=10;i++) //双顺子
{
for(j=i;j<=12;j++)
{
if(a[j]>=2) a[j]-=2;
else break;
if(j-i>=2) dfs(x+1);
}
j--;
while(j>=i) a[j--]+=2;
}
for(int i=1;i<=11;i++) //三顺子
{
for(j=i;j<=12;j++)
{
if(a[j]>=3) a[j]-=3;
else break;
if(j-i>=1) dfs(x+1);
}
j--;
while(j>=i) a[j--]+=3;
}
}
int main()
{
int T,n;
scanf("%d%d",&T,&n);
for(int t=1;t<=T;t++)
{
memset(a,0,sizeof(a));
ans=n;
for(int i=1;i<=n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
if(x>=3&&x<=13) a[x-2]++; //读入忽略花色
if(x==2||x==1) a[x+11]++;
if(x==0) a[14]++;
}
dfs(0);
Ans[t]=ans;
}
for(int i=1;i<=T;i++)
{
printf("%d\n",Ans[i]);
}
return 0;
}