- 博客(5)
- 收藏
- 关注
原创 Fully Convolutional Cross-Scale-Flows for Image-based Defect Detection
归一化流(NF)是将数据转换为易处理分布的生成模型,与传统的神经网络不同,它们的映射是双射的,这允许它们在两个方向上进行训练和评估;此外,由于保留的空间排列,归一化流的潜在空间是可解释的,这使得能够定位图像中的缺陷区域。许多方法不是直接处理图像,而是对预训练网络的特征进行缺陷检测,在ImageNet等大型数据库上进行预训练可确保提取在存在缺陷时预期会有所不同的通用特征,通过这种方式,考虑了无法从无缺陷数据中学习的判别特征,因为它们不一定会出现在其中;为了检测图像中的缺陷需要首先学习无缺陷图像的特征;
2022-11-17 16:53:54 1571 1
原创 FastFlow: Unsupervised Anomaly Detection and Localization via 2D Normalizing Flows
推断中,异常图像的特征应该是非分布的,因此,异常图像的似然比正常图像的似然要低,这种似然可以作为异常评分。具体的,将每个通道的二维概率相加,得到最终的概率图,并使用双线性插值将其上采样到输入图像的分辨率。FastFlow将原有的归一化流扩展到二维空间,使用全卷积网络作为子网络,它可以保持空间的相对位置,提高异常检测的性能,同时支持整幅图像的端到端判断,将异常检测和定位结果一次性直接输出,提高了推断效率。在训练阶段,FastFlow学会将输入的视觉特征转化为可处理的分布,并在推理阶段获得识别异常的可能性。
2022-11-13 15:44:45 873
原创 CFA: Coupled-hypersphere-based Feature Adaptation for Target-Oriented Anomaly Localization
每个提取的特征图的空间分辨率分别为输入样本的1/4、1/8、1/16,优化器采用adamw和amsgrad,学习率为0.003,权重衰减0.0005,batch-size为4,epochs为30,CFA的超参数α为0.00001,β为0.1,作为每个补丁特征的最近邻居数,K和J均为3。异常定位的性能取决于内存库的大小;提出的新方法,通过将迁移学习应用到预训练的CNN来产生具有减少偏差的面向目标的特征;当在适应之前使用偏向于大数据集的特征时,正常特征的正态性被低估并且具有与异常特征相似的分数(第二列)。
2022-11-12 17:08:58 1772 1
原创 Anomaly Detection via Reverse Distillation from One-Class Embedding
为了解决“大容量模型获得的高维描述符可能具有相当大的冗余,表示的高度自由和冗余不利于学生模型解码基本的无异常特征”的不足,引入一个可训练的一类嵌入块,将教师模型的高维表示投影到低维空间中;更高层次的特征层和更宽的感知域可以提高性能(如使用第二和第三层特征的异常检测AUROC达到了94.5%,而只使用第三层特征的性能达到了97.3%);教师E中的下采样是通过一个内核大小1,步幅为2的卷积层实现的,学生D相应解码块采用内核大小为2,步长为2的反卷积层。学生解码器D的架构是对称的,与E相比是反向的,
2022-11-01 11:20:37 1838 2
原创 将VIA标注图像产生的JSON文件转换为mask图
由于在学习的时候,要用到自己标注的样本,需要对样本进行人工标注生成mask图,在使用VGG Image Annotator(VIA)时对样本进行标注(这里不得不说这个网站挺好用的,还不需要下载,操作也简单),标注好之后,保存结果为xx.json文件,需要自己手动将其转换为mask图像,网上找了很多转换代码都不能达到自己的要求,于是自己将其总结,并重新写了能实现目标的代码,下面直接附上代码。
2022-09-23 09:59:00 1393
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人