自学所用
基于耦合超球面的特征适应(CFA),使用适应目标数据集的特征来完成复杂的异常定位。CFA:1.一个可学习的补丁描述符,学习和嵌入面相目标的特征;2.与目标数据集的大小无关的可扩展内存库;CFA采用迁移学习来增加正常特征密度,以便通过补丁描述符和内存库应用于可训练的CNN来区分异常特征。
异常定位的性能取决于内存库的大小;提出的新方法,通过将迁移学习应用到预训练的CNN来产生具有减少偏差的面向目标的特征;定义了一个新的基于软边界回归的损失函数,搜索具有最小半径的超球面,以密集聚类正常特征;提出的损失函数通过利用形成耦合超球面的几个记忆特征来帮助可学习的补丁描述符提取判别特征;减少推理时间,提出一个可扩展的内存库,它不仅缓解了高估异常特征正态性的风险,而且实现了空间复杂性的效率;
贡献:发现了对预训练CNN的偏差特征对异常定位的负面影响,提出了对目标数据集的适应作为解决方案;提出了一种通过度量学习获取判别特征的新方法;
提出了一种基于耦合超球面的特征自适应(CFA),它在目标数据集上执行迁移学习,作为减轻预训练CNN偏差的解决方案;CFA的补丁描述符学习从目标数据集的正常样本中获得的补丁特征,使其在记忆特征周围具有高密度;CFA解决了在使用预训练CNN时,异常特征的正态性被高估的问题。
CFA通过基于具有大数据集的预训练CNN推断mubiao 数据集的样本来获取各种尺度的特征图;
补丁特征:,H、W代表最大特征图的高度和宽度,D表示采样的特征图的维度总和;F的每个像素位置都有一个预定的感受野, 可以被认为是像素位置的语义信息。P被输入到补丁描述符,是一个具有可学习参数的辅助网络,将Pt