动态规划](Dynamicprogramming)详解

动态规划是一种常用的问题求解方法,尤其适用于具有重叠子问题和最优子结构性质的问题。本文将详细介绍动态规划的基本概念、解题思路和应用场景。

一、动态规划的基本概念

动态规划(Dynamic programming)是一种通过拆分问题为子问题并分别求解子问题,最后合并子问题的解来求解原始问题的方法。它是一种递推式的解题思路,可以有效地减少重复计算,提高算法效率。

动态规划的基本思想是将原始问题拆分为多个子问题,并且这些子问题之间存在重叠。通过求解子问题的最优解,可以得到原始问题的最优解。动态规划的核心是定义状态和状态转移方程,通过状态转移方程来建立子问题之间的联系。

动态规划的求解过程一般包括以下几个步骤:

  1. 定义问题的状态:将原始问题转化为一个或多个子问题,定义子问题的状态。
  2. 建立状态转移方程:通过子问题的状态,建立子问题之间的联系,建立状态转移方程。
  3. 解决边界问题:确定初始状态和边界条件,解决边界问题。
  4. 求解子问题:根据状态转移方程,逐步求解子问题。
  5. 合并子问题的解:通过求解子问题的解,得到原始问题的解。

二、动态规划的解题思路

动态规划的解题思路可以总结为以下几步:

  1. 找到问题的重叠子问题:通过观察原始问题,找到重叠子问题的特点。如果一个问题可以拆分为多个子问题,并且这些子问题之间存在重叠,那么就可以使用动态规划求解。
  2. 定义状态:根据重叠子问题的特点,定义问题的状态。状态一般是原始问题的某种属性或特征。
  3. 建立状态转移方程:通过观察重叠子问题之间的联系,建立子问题之间的状态转移方程。
  4. 解决边界问题:确定初始状态和边界条件,解决边界问题,即最小规模的子问题。
  5. 求解子问题:根据状态转移方程,逐步求解子问题,直到求解原始问题。
  6. 合并子问题的解:通过求解子问题的解,得到原始问题的解。

三、动态规划的应用场景

动态规划在实际应用中有广泛的应用场景,包括但不限于以下几个方面:

  1. 最优化问题:动态规划常常用于求解最优化问题,比如求解最大值、最小值等。通过定义问题的状态和状态转移方程,可以得到问题的最优解。
  2. 问题求解:动态规划可以用于求解一些特定问题,比如背包问题、路径规划问题等。通过将问题拆分为子问题,并建立子问题之间的联系,可以解决复杂的问题。
  3. 概率问题:动态规划可以用于求解概率问题,比如概率分布、最可能的事件序列等。通过定义问题的状态和状态转移方程,可以得到问题的概率解。
  4. 优化问题:动态规划可以用于求解优化问题,比如资源分配、任务调度等。通过定义问题的状态和状态转移方程,可以得到问题的最优解。

四、动态规划的实例分析

下面以两个经典的动态规划问题为例,详细介绍动态规划的解题思路和具体步骤。

  1. 斐波那契数列问题

斐波那契数列是一个经典的动态规划问题,定义如下:

def fibonacci(n):
    if n <= 1:
        return n
    else:
        return fibonacci(n-1) + fibonacci(n-2)

上述代码是一个递归的方式求解斐波那契数列。但是这种方式效率比较低,存在大量的重复计算。我们可以使用动态规划的思路改进该算法。

首先定义子问题的状态,可以看出斐波那契数列的第n项依赖于第n-1和第n-2项,所以我们可以定义状态为f(n),表示第n项的值。然后建立状态转移方程,即f(n) = f(n-1) + f(n-2)。最后,解决边界问题,即初始状态f(0) = 0,f(1) = 1。

根据上述思路,我们可以得到以下代码:

def fibonacci(n):
    if n <= 1:
        return n
    else:
        f = [0] * (n+1)
        f[0] = 0
        f[1] = 1
        for i in range(2, n+1):
            f[i] = f[i-1] + f[i-2]
        return f[n]

上述代码使用一个数组f来保存已经计算过的结果,避免了重复计算,提高了算法的效率。

  1. 背包问题

背包问题是一个经典的组合优化问题,定义如下:有一个背包,容量为V,现在有n个物品,每个物品的重量为w[i],价值为c[i],求解如何选择物品,使得背包的总价值最大。

首先定义子问题的状态,可以将问题拆分为多个子问题,令f[i][v]表示在前i个物品中选择若干个物品放入容量为v的背包中,使得背包的总价值最大。然后建立状态转移方程,即f[i][v] = max(f[i-1][v], f[i-1][v-w[i]] + c[i]),表示第i个物品放入背包和不放入背包两种情况下的最大价值。最后,解决边界问题,即初始状态f[0][v] = 0,f[i][0] = 0。

根据上述思路,我们可以得到以下代码:

def knapsack(w, c, V):
    n = len(w)
    f = [[0] * (V+1) for _ in range(n+1)]
    for i in range(1, n+1):
        for v in range(1, V+1):
            if w[i-1] <= v:
                f[i][v] = max(f[i-1][v], f[i-1][v-w[i-1]] + c[i-1])
            else:
                f[i][v] = f[i-1][v]
    return f[n][V]

上述代码使用一个二维数组f来保存已经计算过的结果,避免了重复计算,提高了算法的效率。

总结:

动态规划是一种常用的问题求解方法,尤其适用于具有重叠子问题和最优子结构性质的问题。通过定义问题的状态和状态转移方程,可以将原始问题拆分为多个子问题,并通过求解子问题的最优解来得到原始问题的最优解。动态规划的求解过程包括定义状态、建立状态转移方程、解决边界问题、求解子问题和合并子问题的解。同时,动态规划在实际应用中有广泛的应用场景,包

  • 27
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
SGBM算法中的动态规划部分是指SGM算法(Semi-Global Matching)的实现。在SGBM算法中,首先通过计算代价图来获取初始的视差图。然后,利用动态规划的思想对初始视差图进行优化,以得到更准确的视差图。 动态规划是一种优化问题的常用方法,它通过将问题分解为子问题,并利用子问题的最优解来求解整个问题的最优解。在SGBM算法中,动态规划被用于对每个像素的视差值进行优化。 具体来说,SGBM算法中的动态规划部分包括以下几个步骤: 1. 定义代价函数:根据图像的亮度差异等因素,定义一个代价函数来衡量不同视差值的匹配程度。 2. 计算代价图:对于每个像素,计算其与邻域像素的代价值,并将这些代价值组成一个代价图。 3. 动态规划优化:利用动态规划的思想,从左到右和从上到下遍历代价图,通过比较当前像素与其左侧和上方像素的代价值,选择最小的代价值作为当前像素的最优视差值。 4. 反向传播:从右下角开始,从右到左和从下到上遍历代价图,通过比较当前像素与其右侧和下方像素的代价值,进一步优化当前像素的最优视差值。 5. 视差平滑:为了进一步提高视差图的质量,可以对最终的视差图进行平滑处理,以减少噪声和不连续性。 通过以上步骤,SGBM算法能够对初始视差图进行优化,得到更准确的视差图。这样可以提高立体匹配的效果,使得物体的深度信息更加准确可靠。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

望舒巴巴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值