二叉树的深度遍历

二叉树遍历的递归与迭代实现

用于个人记录

1)前序遍历

递归:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> ans = new ArrayList<>();
        preorder(root, ans);
        return ans;
    }
    public void preorder(TreeNode root , List<Integer> list){
        if(root == null) return;
        
        //处理单层逻辑
        list.add(root.val);
        preorder(root.left, list);
        preorder(root.right, list);
        
    }
}

迭代:

class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> ans = new ArrayList<>();
        if(root == null)return ans;
        
        LinkedList<TreeNode> stack = new LinkedList<>();
        stack.addLast(root);
        
        while(!stack.isEmpty()){
            TreeNode temp = stack.removeLast();
            ans.add(temp.val);
            if (temp.right!=null)stack.addLast(temp.right);
            if (temp.left!=null)stack.addLast(temp.left);
        }
        return ans;
    }
  
}

2)后序遍历

递归:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> ans = new ArrayList<>();
        backorder(root, ans);
        return ans;
    }
    public void backorder(TreeNode root, List<Integer> list){
        if(root == null ) return ;
        //
        backorder(root.left, list);
        backorder(root.right, list);
        list.add(root.val);
    }
}

迭代:

可以由前序遍历稍微改点代码而来: 前序(中左右)---->改变前序遍历中某个节点的左右节点加入栈的顺序(即变为中右左)--->反转最终list中的顺序(即变为左右中)

class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> ans = new ArrayList<>();
        if(root == null)return ans;
        
        LinkedList<TreeNode> stack = new LinkedList<>();
        stack.addLast(root);
        
        while(!stack.isEmpty()){
            TreeNode temp = stack.removeLast();
            ans.add(temp.val);
            if (temp.left!=null)stack.addLast(temp.left);
            if (temp.right!=null)stack.addLast(temp.right);
            
        }
        
        Collections.reverse(ans);
        return ans;
    }
   
}

3)中序遍历

递归:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer>  ans = new ArrayList<>();
        inorder(root, ans);
        return ans;
        
    }
    public void inorder(TreeNode root, List<Integer> list){
        if(root == null) return;
        //
        inorder(root.left, list);
        list.add(root.val);
        inorder(root.right, list);
    }
}

迭代:

class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer>  ans = new ArrayList<>();
        if(root == null) return ans;
        
        LinkedList<TreeNode> stack = new LinkedList<>();
        while(!stack.isEmpty() || root!=null){
            while(root!=null){
                stack.addLast(root);
                root = root.left;
            }
            root = stack.removeLast();
            ans.add(root.val);
            
             root = root.right;
            
        }
        return ans;
        
    }
   
}

### 二叉树深度优先遍历的递归实现原理 深度优先遍历(Depth-First Search, DFS)是一种常用于遍历二叉树的策略,它包括前序遍历、中序遍历和后序遍历三种方式。递归实现的核心在于利用函数调用栈来模拟遍历过程,通过递归调用访问左子树和右子树[^1]。 #### 前序遍历 前序遍历的顺序是:先访问根节点,然后递归地前序遍历左子树,最后递归地前序遍历右子树。前序遍历的递归实现代码如下: ```python def preorderTraversal(root): result = [] if root: result.append(root.val) result += preorderTraversal(root.left) result += preorderTraversal(root.right) return result ``` #### 中序遍历 中序遍历的顺序是:先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。中序遍历的递归实现代码如下: ```python def inorderTraversal(root): result = [] if root: result += inorderTraversal(root.left) result.append(root.val) result += inorderTraversal(root.right) return result ``` #### 后序遍历 后序遍历的顺序是:先递归地后序遍历左子树,然后递归地后序遍历右子树,最后访问根节点。后序遍历的递归实现代码如下: ```python def postorderTraversal(root): result = [] if root: result += postorderTraversal(root.left) result += postorderTraversal(root.right) result.append(root.val) return result ``` ### 递归实现的特点 递归实现的优点在于代码简洁且易于理解,通过递归调用能够自然地表达遍历过程中的分治思想。然而,递归实现也有其局限性,特别是在处理大规模或不平衡的二叉树时,可能会导致栈溢出或资源消耗过大。因此,在具体应用中需要根据实际情况选择合适的遍历策略[^3]。 ### 示例用法 以一个简单的二叉树为例,假设构造的二叉树如下: ``` 1 / \ 2 3 / \ 4 5 ``` 前序遍历的结果是 `[1, 2, 4, 5, 3]`,中序遍历的结果是 `[4, 2, 5, 1, 3]`,后序遍历的结果是 `[4, 5, 2, 3, 1]`。 ### 总结 递归实现利用了函数调用栈,通过递归调用访问左右子树,从而完成深度优先遍历代码简洁且易于理解,但在实际应用中需注意递归深度的问题[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值