【问题描述】
自幂数是指,一个N位数,满足各位数字N次方之和是本身。例如,153 是 3
位数,其每位数的 3 次方之和,1 3 + 5 3 + 3 3 = 153,因此 153 是自幂数;1634
是 4 位数,其每位数的 4 次方之和,1 4 + 6 4 + 3 4 + 4 4 = 1634,因此 1634 是自
幂数。
现在,输入若干个正整数,请判断它们是否是自幂数。
【输入描述】
输入第一行是一个正整数M,表示有M个待判断的正整数。约定 1 ≤ M ≤ 100。
从第 2 行开始的M行,每行一个待判断的正整数。约定这些正整数均小于。
【输出描述】
输出M行,如果对应的待判断正整数为自幂数,则输出英文大写字母'T',否
则输出英文大写字母'F'。
提示:不需要等到所有输入结束在依次输出,可以输入一个数就判断一个数
并输出,再输入下一个数。
【样例输入 1】
3
152
111
153
【样例输出 1】
F
F
T
【样例输入 2】
5
8208
548834
88593477
12345
5432
【样例输出 2】
T
T
T
F
F
【题目大意】
判断 M 个给定的整数是否是自幂数。一个 x 位的整数 n 是自幂数的条件是:各
位数字的 x 次方之和等于 n。给定的正整数均小于。
【考纲知识点】多层分支/循环结构(二级)
【解题思路】
1. 每次输入 n 之后,首先计算 n 的位数 l。可以把 n 赋值给 t,然后不断把 t 除
以 10,直到 t 等于 0 为止,每除一次就把变量 l 加 1。
2. 得到位数 l 后,再次把 t 赋值为 n,然后使用 while 循环,每次取 t 的个位,
计算其 l 次方计入总和 sum,然后把 t 除以 10,直到 t 等于 0 为止。
3. 如果 sum 等于 n,说明 n 是自幂数,按照题目要求输出即可。
【参考程序】
#include <iostream>
using namespace std;
int main() {
int m = 0;
cin >> m;
for (int i = 0; i < m; i++) {
int n = 0;
cin >> n;
// 数一下 n 有多少位数,记为 l
int t = n, l = 0;
while (t > 0) {
t /= 10;
l++;
}
// 每位数 l 次方求和,记为 sum
int sum = 0;
t = n;
while (t > 0) {
int d = t % 10;
t /= 10;
int mul = 1;
for (int j = 0; j < l; j++)
mul *= d;
sum += mul;
}
// 根据 sum 和 n 是否相等,判断是否为自幂数
if (sum == n)
cout << "T" << endl;
else
cout << "F" << endl;
}
return 0;
}