[GESP202306 二级] 自幂数判断

题目描述

自幂数是指,一个 N 位数,满足各位数字 N 次方之和是本身。例如,153 是 3 位数,其每位数的 3 次方之和,13+53+33=15313+53+33=153,因此 153 是自幂数;1634 是 4位数,其每位数的 4 次方之和,14+64+34+44=163414+64+34+44=1634,因此 1634 是自幂数。现在,输入若干个正整数,请判断它们是否是自幂数。

输入格式

输入第一行是一个正整数 M,表示有 M 个待判断的正整数。约定 1≤M≤1001≤M≤100。

从第 22 行开始的 M 行,每行一个待判断的正整数。约定这些正整数均小于 108

输出格式

输出 M 行,如果对应的待判断正整数为自幂数,则输出英文大写字母 T,否则输出英文大写字母 F。

提示:不需要等到所有输入结束在依次输出,可以输入一个数就判断一个数并输出,再输入下一个数。

输入数据 1

3
152
111
153

输出数据 1

F
F
T

解法

很简单,就是数位分离

代码如下:

#include<bits/stdc++.h>
using namespace std;
#define int long long
int n;
signed main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cin>>n;
    /*
        字符串的长度是每个数的几次方,要分离字符串
        数位分离,用pow函数
    */
    while(n--){
        string s;
        cin>>s;
        int a=0,b=0;
        for(int i=0;i<s.size();i++){
            a*=10;//数位分离
            a+=s[i]-'0';
        }
        /*字符串转数字,题目中要用pow函数*/
        for(int i=0;i<s.size();i++)b+=pow(s[i]-'0',s.size());
        //判断
        if(a==b) cout<<"T\n";
        else cout<<"F\n";
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值