有界性的证明(例题)

在这里插入图片描述

简述:

显而易见,在(0,1)上f(xx)有下界。因此,证明在这个范围内无上界则可证明其无界。

证明其无上界的原理:

要证明无上界,需要证明∀M∈(1,+∞),∃x0使得f(x0)>M
在这里就要保证对于每一个M都存在x0这里就要把M和x0联系起来在这里就有两个选择:

两个选择(都可以)

1.用M表示x0的值的范围
2.用x0表示M的范围
尝试之后就会发现1.更好用

先自己尝试

以下是解释
∀M∈(1,+∞) 存在x0
要使f(x0)总是.>M
只要x0<1/M ——①即可
也就是说只要证明①符合条件就能证明f(x) 无上界进而证明f(x)无界
M∈(1,+∞)可推出 1/M∈(0,1)而x0∈(0,1)
推出∃x0<1/M

考试答题按图片中的格式为好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值