简述:
显而易见,在(0,1)上f(xx)有下界。因此,证明在这个范围内无上界则可证明其无界。
证明其无上界的原理:
要证明无上界,需要证明∀M∈(1,+∞),都∃x0使得f(x0)>M
在这里就要保证对于每一个M都存在x0这里就要把M和x0联系起来在这里就有两个选择:
两个选择(都可以)
1.用M表示x0的值的范围
2.用x0表示M的范围
尝试之后就会发现1.更好用
先自己尝试
以下是解释
∀M∈(1,+∞) 存在x0
要使f(x0)总是.>M
只要x0<1/M ——①即可
也就是说只要证明①符合条件就能证明f(x) 无上界进而证明f(x)无界
M∈(1,+∞)可推出 1/M∈(0,1)而x0∈(0,1)
推出∃x0<1/M