高数——第一章函数

一、实数集:

1、集合:

2.定义:

质数:(又称素数)一个大于 1 的自然数,除了 1 和它自身外,不能被其他自然数整除的数叫做质数。
互素;(又称互质)若两个整数的最大公约数是 1,则称这两个整数互素。
开区间,闭区间,半开半闭区间。
δ-邻域:记为U(a,δ),a为U(a,δ)的中心,δ为U(a,δ)的半径。如图:
png=400x
如果扣掉a点为去心(或空心)δ-邻域
以a为中心左半部分为左 δ-邻域
右半部分为右 δ-邻域开区间

二、函数:

1、各种符号:

Df或D(f):

定义域

Rf或R(f):

值域

2、特殊函数:

符号函数

记为:sgn x
在这里插入图片描述

取整函数

记为:y=[x]
描述:x为任意实数,[x]表示不超过x 的最大整数

迪利克雷函数

在这里插入图片描述
特点:任何有理数都是这个函数的周期

3.函数的简单性质:

有界性

f(x)<=M M为上界
f(x)>=M M为下界
上界与下界都有为有界函数,反之为无界函数

单调性

单调增加(严格单调增加)
单调减少(严格单调减少)
单增或单减的函数——单调函数(严格单调函数)

奇偶性

周期性

注意:有些函数没有最小正周期

三、反函数与复合函数:

1.反函数:

y=f(x)的反函数为x=f-1(y)可以改写成y=f-1(x)

2.复合函数:

令y=f(x) u=g(x) 若D(f)包含R(g)
y=f(g(x))为y=f(x) u=g(x)复合成的复合函数
u为中间变量

四、初等函数:

1.基本初等函数(六个)

(1)常值函数 y=c!
(2)幂函数 y=xk,k为负数时——x!=0
(3)指数函数y=ax
(4)对数函数y=logax(a>0且a!=1)
(5)三角函数
在这里插入图片描述

(6)反三角函数:arc… 如:arctan、acrsin…
注意:值域固定为 (–π/2,π/2)

2.初等函数的定义:

由基本初等函数经过有限次的四则运算(或)有限次的复合产生

五、参数方程与极坐标:

1.参数方程:

参数的定义

为了更好地表示而引入的变量

参数方程的的常见应用

(1)圆的表示
在这里插入图片描述
(2)椭圆的表示:
类比(1)
(3)双曲线的表示:
类比(1)
(4)车轮线的表示:
在这里插入图片描述
(5)星形图
在这里插入图片描述

2.极坐标:

(1)定义

在这里插入图片描述

极坐标系

平面内由极点、极轴和极径组成的坐标系

极点

O点

极轴

Ox射线

极径

r

极角

角θ

极坐标

(r,θ)

六、复数

1.定义:复数、实部、虚部、纯虚数、共轭复数、复平面;欧拉公式

(1)复数:形如z=x+yi的数
(2)实部:x=Re z
(3)虚部:y=Im z
(4)纯虚数:x=0的虚数
(5)共轭复数:两个相加虚部为0的复数
(6)复平面:x轴为实部,y轴为虚部的坐标轴

2.复数的极坐标:在复平面上;辐角、主辐角、复数0

模长为r
辐角为θ

主辐角/辐角:

辐角Arg z——无范围
主辐角argz——(-π,π]

模为0
无辐角

3.复数的两种表示方式:(2种)

(1)三角形式

z=r(cosθ+i sinθ)

(2)指数形式

z=re
由欧拉公式推出

4.欧拉公式的简单应用:

e=cosθ+i sinθ
(1)处理(cosθ+i sinθ)n得到einθ
(2)处理(cosθ+i sinθ)n得到cos nθ+i sin nθ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值