一、实数集:
1、集合:
2.定义:
质数:(又称素数)一个大于 1 的自然数,除了 1 和它自身外,不能被其他自然数整除的数叫做质数。
互素;(又称互质)若两个整数的最大公约数是 1,则称这两个整数互素。
开区间,闭区间,半开半闭区间。
δ-邻域:记为U(a,δ),a为U(a,δ)的中心,δ为U(a,δ)的半径。如图:
如果扣掉a点为去心(或空心)δ-邻域
以a为中心左半部分为左 δ-邻域
右半部分为右 δ-邻域 为 开区间
二、函数:
1、各种符号:
Df或D(f):
定义域
Rf或R(f):
值域
2、特殊函数:
符号函数
记为:sgn x
取整函数
记为:y=[x]
描述:x为任意实数,[x]表示不超过x 的最大整数
迪利克雷函数
特点:任何有理数都是这个函数的周期
3.函数的简单性质:
有界性
f(x)<=M M为上界
f(x)>=M M为下界
上界与下界都有为有界函数,反之为无界函数
单调性
单调增加(严格单调增加)
单调减少(严格单调减少)
单增或单减的函数——单调函数(严格单调函数)
奇偶性
周期性
注意:有些函数没有最小正周期
三、反函数与复合函数:
1.反函数:
y=f(x)的反函数为x=f-1(y)可以改写成y=f-1(x)
2.复合函数:
令y=f(x) u=g(x) 若D(f)包含R(g)
y=f(g(x))为y=f(x) u=g(x)复合成的复合函数
u为中间变量
四、初等函数:
1.基本初等函数(六个)
(1)常值函数 y=c!
(2)幂函数 y=xk,k为负数时——x!=0
(3)指数函数y=ax
(4)对数函数y=logax(a>0且a!=1)
(5)三角函数
(6)反三角函数:arc… 如:arctan、acrsin…
注意:值域固定为 (–π/2,π/2)
2.初等函数的定义:
由基本初等函数经过有限次的四则运算(或)有限次的复合产生
五、参数方程与极坐标:
1.参数方程:
参数的定义
为了更好地表示而引入的变量
参数方程的的常见应用
(1)圆的表示
(2)椭圆的表示:
类比(1)
(3)双曲线的表示:
类比(1)
(4)车轮线的表示:
(5)星形图
2.极坐标:
(1)定义
极坐标系
平面内由极点、极轴和极径组成的坐标系
极点
O点
极轴
Ox射线
极径
r
极角
角θ
极坐标
(r,θ)
六、复数
1.定义:复数、实部、虚部、纯虚数、共轭复数、复平面;欧拉公式
(1)复数:形如z=x+yi的数
(2)实部:x=Re z
(3)虚部:y=Im z
(4)纯虚数:x=0的虚数
(5)共轭复数:两个相加虚部为0的复数
(6)复平面:x轴为实部,y轴为虚部的坐标轴
2.复数的极坐标:在复平面上;辐角、主辐角、复数0
模长为r
辐角为θ
主辐角/辐角:
辐角Arg z——无范围
主辐角argz——(-π,π]
零
模为0
无辐角
3.复数的两种表示方式:(2种)
(1)三角形式
z=r(cosθ+i sinθ)
(2)指数形式
z=reiθ
由欧拉公式推出
4.欧拉公式的简单应用:
eiθ=cosθ+i sinθ
(1)处理(cosθ+i sinθ)n得到einθ
(2)处理(cosθ+i sinθ)n得到cos nθ+i sin nθ