自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 voc2007转yolo格式

官方链接 http://host.robots.ox.ac.uk/pascal/VOC/点击2007,页面向下滑,同时下载训练集和测试集解压后手动合并到同一文件夹。

2024-11-22 21:35:34 383

原创 yolov5剪枝问题汇总

问题一 np.int报错问题二问题三 运行prune.py报错,未生成pt文件

2024-11-20 17:13:44 210

原创 YOLOv5训练结果

包含best.pt(做detect时用这个)和last.pt(最后一次训练模型)

2024-10-22 15:58:02 414

原创 安装labeling:‘labelimg’不是内部或外部命令,也不是可运行的程序 或批处理文件

问题:‘labelimg’不是内部或外部命令,也不是可运行的程序 或批处理文件。

2024-10-16 15:53:43 232

原创 yolov5 ap

【代码】yolov5 ap。

2024-10-08 13:14:27 157

原创 yolov5训练部分

(‘%11s’ * 7) 创建了一个格式字符串,表示每个字符串占 11 个字符的位置,并且重复了 7 次。

2024-09-24 10:13:26 315

原创 yolov5 损失函数

0.5 * eps 这是负类标签的平滑值。给予负类标签一个小的概率,旨在避免模型对负样本的过于自信,从而提高泛化能力。用于生成平滑的二元交叉熵损失(Binary Cross-Entropy)。函数接收一个参数 eps,并返回两个值。1.0 - 0.5 * eps 这是正类标签的平滑值。通过减少标签的绝对值,减少模型对样本的过拟合。

2024-09-22 10:41:40 420

原创 Yolov5主要代码

数据增强(可选):如果提供了自定义的转换函数,可以应用数据增强技术,如随机裁剪、翻转等,增强训练数据的多样性。维度变换:将图像维度从 HWC(高度、宽度、通道)转换为 CHW(通道、高度、宽度),并确保数据的连续性。缩放与填充:使用 letterbox 函数将图像调整到指定尺寸,同时保持原始宽高比,并用填充填补边界。颜色通道转换:将图像从 BGR 格式转换为 RGB 格式,以适应模型的输入要求。归一化:将像素值缩放到 [0, 1] 范围,通常通过除以 255 实现。

2024-09-18 16:56:13 553

原创 yolov5 各模块代码详解

用于计算卷积操作中的填充(padding),以确保输出的形状和输入形状相同*d代表膨胀因子(dilation)用于控制卷积核在输入数据上的间隔,增加卷积的感受野而不实际增加卷积核尺寸公式:k=d(k-1)+1 *

2024-09-10 22:52:50 1906

原创 yolov5

选择warmup预热学习率的方式,可以使得开始训练的几个epoches或者一些steps内学习率较小,在预热的小学习率下,模型可以慢慢趋于稳定,等模型相对稳定后在选择预先设置的学习率进行训练,使得模型收敛速度更快,模型效果更佳。Anchor给出了目标宽高的初始值,需要回归的是真实宽高和初始宽高的偏移量,而不使用anchor的做法需要回归宽高的绝对量。刚开始训练,模型的权重(weights)随机初始化,此时选择较大的lr,可能带来模型的不稳定(震荡)对每个批次,按照公式进行学习率的衰减。

2024-09-09 19:20:29 1468

原创 yolov5 遗传算法

evolve.txt会记录每次进化之后的results+hyp,每次进化时,hyp会根据之前的results进行从大到小的排序,再根据fitness函数计算之前每次进化得到的hyp的权重;训练结束后,如果是多卡训练(WORLD_SIZE>1),并且当前进程是主进程(RANK==0),则销毁分布式的进程组。opt.evolve为False,调用train()函数进行标准训练。如果opt.evolve为True,则进行超参数进化训练。用于训练机器学习模型,涉及两种模式:标准训练和超参数训练。

2024-09-07 22:08:50 554

原创 李沐动手学深度学笔记

anchors_bbox_map:通过调用assign_anchor_to_bbox函数,将锚框分配到真实边界框上,返回一个映射,表示每个锚框与真实边界框的关系。#初始化,batch_size图像数量,anchors:移除第一维,得到形状(num_anchors,4)的张量。给定两个锚框或边界框的列表,以下。#输入锚框和标签(真实边界框),输出额的使锚框的偏移量,掩码,类别标签。锚框A的偏移量根据B和A的中心坐标的相对位置及这两个框的相对大小进行标记。锚框A,真实边框B,锚框A的类别被标记为与B相同。

2024-09-03 10:21:26 1566

原创 深度学习项目一 基于AlexNet的手写数字识别系统

total = 0。

2024-08-29 16:39:16 637

原创 Kaggle:房价预测报错:数据类型转换报错

解决:加一行all_features=all_features*1,实现将True和False转化为1和0。原因:热编码的时候把0和1编码成了True和False。

2024-07-10 13:50:52 262

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除