yolov5 ap

# 计算模型的适应度
def fitness(x):
    w=[0.0,0.0,0.1,0.9]
    return (x[:,:4*w]).sum(1)

def smooth(y,f=0.05):
    # 滤波器的大小
    nf=round(len(y)*f*2)//2+1
    # 边界处理
    p=np.ones(nf//2)
    # 在原数组的前后分别添加若干个重复的首尾元素,以避免在卷积计算时因边界效应导致的失真。
    yp=np.concatenate((p*y[0],y,p*y[-1]),0)
    # 卷积计算,使用卷积函数,对填充后的数组 yp 进行滤波。np.ones(nf) / nf 创建一个均值滤波器,其元素均为 1/nf。
    return np.convolve(yp,np.ones(nf)/nf,mode='valid')


def ap_per_class(tp,conf,pred_cls,target_cls,plot=False,save_dir='.',names=(),eps=1e-6,prefix=""):
    # 对conf置信度进行降序排序
    i=np.argsort(-conf)
    tp,conf,pred_cls&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值