1、题目描述
给定一个链表的头节点 head
,返回链表开始入环的第一个节点。 如果链表无环,则返回 null
。
如果链表中有某个节点,可以通过连续跟踪 next
指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos
来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos
是 -1
,则在该链表中没有环。注意:pos
不作为参数进行传递,仅仅是为了标识链表的实际情况。
不允许修改 链表。
示例 1:
输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:
输入:head = [1,2], pos = 0
输出:返回索引为 0 的链表节点
解释:链表中有一个环,其尾部连接到第一个节点。
示例 3:
输入:head = [1], pos = -1
输出:返回 null
解释:链表中没有环。
提示:
-
链表中节点的数目范围在范围
[0, 104]
内 -
-105 <= Node.val <= 105
-
pos
的值为-1
或者链表中的一个有效索引
进阶:你是否可以使用 O(1)
空间解决此题?
2、方法1:哈希集合
解题思路
-
初始化哈希集合:创建一个
HashSet
来存储已经访问过的节点引用(地址)。 -
遍历链表:
-
从链表头节点
head
开始,依次访问每个节点。 -
对于当前节点
head
:-
如果
head
已经存在于HashSet
中:-
说明该节点是入环的第一个节点,直接返回该节点。
-
-
如果
head
不在HashSet
中:-
将该节点加入
HashSet
,表示已经访问过。 -
移动
head
指针到下一个节点(head = head.next
)。
-
-
-
-
遍历结束:
-
如果
head
移动到null
,说明链表无环,返回null
。
-
关键点
-
哈希集合存储的是节点引用(地址),可以正确处理链表中有重复值的情况。
-
时间复杂度:O(n),需要遍历整个链表。
-
空间复杂度:O(n),最坏情况下需要存储所有节点。
//使用hashSet解题,第一次当判断set集合中存在该节点的时候,就是环的入口节点,也证明有环
public static ListNode isCycleII(ListNode head){
if (head == null) return null;
HashSet<ListNode> hashSet = new HashSet<>();
while (head != null){
if (hashSet.contains(head)){
return head;//有环,且遍历第一次判断该节点在set中存在,则是第一个环的入口
}
hashSet.add(head);
head = head.next;
}
return null;//表示无环
}
3、方法2:快慢指针
解题思路
-
初始化指针:
-
慢指针
last
和快指针fast
都指向头节点head
。
-
-
判断是否有环:
-
使用快慢指针遍历链表:
-
慢指针
last
每次移动一步(last = last.next
)。 -
快指针
fast
每次移动两步(fast = fast.next.next
)。
-
-
如果快慢指针相遇:
-
说明链表有环,设置
isCycle = true
并退出循环。
-
-
如果快指针遇到
null
:-
说明链表无环,直接返回
null
。
-
-
-
寻找环的入口:
-
如果有环,将慢指针
last
重新指向头节点head
。 -
快慢指针同时每次移动一步,直到再次相遇:
-
相遇的节点即为环的入口节点。
-
-
-
返回结果:
-
返回相遇的节点(环的入口)或
null
(无环)。
-
关键点
-
快慢指针的速度差:
-
慢指针每次移动一步,快指针每次移动两步。
-
如果有环,快指针最终会追上慢指针。
-
-
环的入口定位:
-
快慢指针相遇后,将慢指针重置到
head
,然后快慢指针同步移动,再次相遇的点即为入口。 -
-
-
时间复杂度:O(n),快指针遍历速度更快。
-
空间复杂度:O(1),仅需两个指针,无需额外空间。
// 使用快慢指针,先判断是否有环,如果有环的话,将慢指针重新指向头结点head,
// 然后再遍历链表,快慢指针都每次直走一步,当两者再次相遇,则指向的结点就是环的入口节点
public static ListNode isCycleII(ListNode head){
if (head == null) return null;
ListNode last = head, fast = head;
boolean isCycle=false; //默认为false
while (fast != null && fast.next != null && fast.next.next != null){
last = last.next;
fast = fast.next.next;
if (fast == last ){//说明有环
isCycle = true;
break;
}
}
if (isCycle){//有环
last = head;
while (last != fast){
last = last.next;
fast = fast.next;
}
//退出循环的时候,该节点就是环的入口节点
return last;
}
return null;//如果上面都不成立,说明无环
}