完全背包问题

本人刚入门dp,水平较菜,因此记录自己对于此题的代码思路,希望能帮到刚入门的同学,也为自己复习留一份记录。

朴素版算法:

#include <iostream>
using namespace std;
const int N = 1010;
int v[N], w[N];
int dp[N][N];
int main()
{
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ )
    {
        cin >> v[i] >> w[i];
    }
    for (int i = 1; i <= n; i ++ )
    {
        for (int j = 0; j <= m; j ++ )
        {
            for(int k = 0; k * v[i] <= j; k ++ )
            {
                dp[i][j] = max(dp[i][j], dp[i - 1][j - k * v[i]] + k * w[i]);
            }
        }

    }
    cout << dp[n][m] << endl;
    return 0;
}

不难发现朴素算法时间复杂度较高。

优化思路:对状态转移方程进行改进

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - k * v[i]] + k * w[i]);

dp[i][j - v[i]] = max(dp[i - 1][j - v[i]], dp[i - 1][j - (k - 1) * v[i]] + k * w[i]);

其中k = 1, 2, 3....

上下做差可得

dp[i][j] = max(dp[i][j - v[i]] + w[i], dp[i - 1][j])

上式即为新状态转移方程。

改进代码:

#include <iostream>
using namespace std;
const int N = 1010;
int v[N], w[N];
int dp[N][N];
int main()
{
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ )
    {
        cin >> v[i] >> w[i];
    }
    for (int i = 1; i <= n; i ++ )
    {
        for (int j = 0; j <= m; j ++ )
        {
            dp[i][j] = dp[i - 1][j];
            if(j >= v[i])
                dp[i][j] = max(dp[i][j - v[i]] + w[i], dp[i][j]);
        }
    }
    cout << dp[n][m] << endl;
    return 0;
}

观察到上述代码与01背包问题高度相似,因此可优化为一维:

#include <iostream>
using namespace std;
const int N = 1010;
int v[N], w[N];
int dp[N];
int main()
{
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ )
    {
        cin >> v[i] >> w[i];
    }
    for (int i = 1; i <= n; i ++ )
    {
        for (int j = 0; j <= m; j ++ )//此处由于均使用i- 1维,因此不需要从大到小枚举
        {
            if(j >= v[i])
                dp[j] = max(dp[j - v[i]] + w[i], dp[j]);
        }
    }
    cout << dp[m] << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值