仅在01背包代码上小做修改即可
二维:
#include<bits/stdc++.h>
using namespace std;
const int N=110;
int f[N][N]; //只从前i组物品中选,当前体积小于等于j的最大值
int v[N][N],w[N][N],s[N]; //v为体积,w为价值,s代表第i组物品的个数
int main()
{
int n, m;
cin >> n >> m;
for (int i = 1; i <= n; i ++ )
{
cin >> s[i];
for(int j = 1; j <= s[i]; j ++ )
cin >> v[i][j] >> w[i][j];
}
for(int i = 1; i <= n; i ++ )//尝试装入n组物品
{
for (int j = 1; j <= m; j ++ )//最大体积为j时能装入物品的最大价值
{
f[i][j] = f[i - 1][j];
for(int k = 1; k <= s[i]; k ++ )
{
if(j >= v[i][k])//当剩余体积不够放入时,此时最大价值等于不放入该物体的最大价值
{
f[i][j] = max(f[i][j], f[i - 1][j - v[i][k]] + w[i][k]);//前者为不选,后者为选择
//且由于多加一层循环,需要不断地循环比较同一组的值,因此转移方程不能在使用f[i - 1],所以将求不选的情况移到循环外
}
}
}
}
cout << f[n][m] << endl;
return 0;
}
一维:(采用01背包同理的优化方法)
#include<bits/stdc++.h>
using namespace std;
const int N=110;
int f[N]; //只从前i组物品中选,当前体积小于等于j的最大值
int v[N][N],w[N][N],s[N]; //v为体积,w为价值,s代表第i组物品的个数
int main()
{
int n, m;
cin >> n >> m;
for (int i = 1; i <= n; i ++ )
{
cin >> s[i];
for(int j = 1; j <= s[i]; j ++ )
cin >> v[i][j] >> w[i][j];
}
for(int i = 1; i <= n; i ++ )//尝试装入n组物品
{
for (int j = m; j > 0; j -- )//最大体积为j时能装入物品的最大价值
{
for(int k = 1; k <= s[i]; k ++ )
{
if(j >= v[i][k])//当剩余体积不够放入时,此时最大价值等于不放入该物体的最大价值
{
f[j] = max(f[j], f[j - v[i][k]] + w[i][k]);//前者为不选,后者为选择
//且由于多加一层循环,需要不断地循环比较同一组的值,因此转移方程不能在使用f[i - 1],所以将求不选的情况移到循环外
}
}
}
}
cout << f[m] << endl;
return 0;
}