分组背包问题

仅在01背包代码上小做修改即可

二维:

#include<bits/stdc++.h>
using namespace std;

const int N=110;
int f[N][N];  //只从前i组物品中选,当前体积小于等于j的最大值
int v[N][N],w[N][N],s[N];   //v为体积,w为价值,s代表第i组物品的个数


int main()
{
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ )
    {
        cin >> s[i];
        for(int j = 1; j <= s[i]; j ++ )
            cin >> v[i][j] >> w[i][j];
    }
    for(int i = 1; i <= n; i ++ )//尝试装入n组物品
    {
        for (int j = 1; j <= m; j ++ )//最大体积为j时能装入物品的最大价值
        {
            f[i][j] = f[i - 1][j];
            
            for(int k = 1; k <= s[i]; k ++ )
            {
                if(j >= v[i][k])//当剩余体积不够放入时,此时最大价值等于不放入该物体的最大价值
                {
                    f[i][j] = max(f[i][j], f[i - 1][j - v[i][k]] + w[i][k]);//前者为不选,后者为选择
                    //且由于多加一层循环,需要不断地循环比较同一组的值,因此转移方程不能在使用f[i - 1],所以将求不选的情况移到循环外
                }
                
            }
            
        }
    }
    cout << f[n][m] << endl;
    return 0;
}

一维:(采用01背包同理的优化方法)

#include<bits/stdc++.h>
using namespace std;

const int N=110;
int f[N];  //只从前i组物品中选,当前体积小于等于j的最大值
int v[N][N],w[N][N],s[N];   //v为体积,w为价值,s代表第i组物品的个数


int main()
{
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ )
    {
        cin >> s[i];
        for(int j = 1; j <= s[i]; j ++ )
            cin >> v[i][j] >> w[i][j];
    }
    for(int i = 1; i <= n; i ++ )//尝试装入n组物品
    {
        for (int j = m; j > 0; j -- )//最大体积为j时能装入物品的最大价值
        {
            for(int k = 1; k <= s[i]; k ++ )
            {
                if(j >= v[i][k])//当剩余体积不够放入时,此时最大价值等于不放入该物体的最大价值
                {
                    f[j] = max(f[j], f[j - v[i][k]] + w[i][k]);//前者为不选,后者为选择
                    //且由于多加一层循环,需要不断地循环比较同一组的值,因此转移方程不能在使用f[i - 1],所以将求不选的情况移到循环外
                }
            }
        }
    }
    cout << f[m] << endl;
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值