原文连接:https://www.geeksforgeeks.org/avl-tree-set-1-insertion/
AVL是一个自平衡的二叉搜索树(BST),和普通二叉搜索树的区别是AVL树的所有节点的左子树和右子树的高度差不大于1.
一个AVL树的例子:
上面是一个AVL树因为每一个树节点的左子树和右子树的高度差小于或者等于1.
一个不是AVL树的例子:
上面不是一个AVL树因为左子树8和右子树18 的高度差大于1.
什么是AVL树?
大多数二叉搜索树(BST)的操作(如:搜索,最大,最小,插入,删除…等)需要O(h)的时间(h是BST的高度)。但是对于歪斜树(skewed Binary tree)操作时间变成了O(n)(n是树的节点数量)。如果我们确保树的高度在每次插入和删除后仍然是O(Logn),那么我们就能保证所有这些操作时间的上限是O(Logn)。而AVL树的高度总是O{Logn)。
插入
为了确保树每次插入后保持AVL,我们需要在标准的BST插入中增加一些重新平衡的操作。下面是两个基础的操作用来重新平衡BST而不违反BST的特性(keys(left) < key(root) < keys(right))。
1)左旋
2)右旋
T1,T2和T3是根节点y(左边)或者跟节点x(右边)的子树
y x
/ \ 右旋 / \
x T3 - - - - - - - > T1 y
/ \ < - - - - - - - / \
T1 T2 左旋 T2 T3
上面两个树的节点值都遵循下面的顺序:
keys(T1) < key(x) < keys(T2) < key(y) < keys(T3)
插入的步骤
设新插入的节点为w
1)标准的BST插入法插入w。
2)从w开始,往上寻找第一不平衡的节点,设z为第一个不平衡的节点,设y为从w到z路径上z的子节点,x为从w到z的路径上的z的孙节点。
3)通过对以z为根节点的子树适当的旋转来重新平衡。那么就需要处理下面四种情况(排列组合):
a)y是z的左子节点,同时x是z的左子节点(左 左)
b)y是z的左子节点,同时x是z的右子节点(左 左)
c)y是z的右子节点,同时x是z的右子节点(左 左)
d)y是z的右子节点,同时x是z的左子节点(左 左)
下面是这四种情况的操作,在所有的情况中,我们只需要重新平衡以z为根节点的子树,那么整个树就平衡了,因为平衡后的以z为根节点的子树的高度和插入节点前一样。
a)左 左:
T1, T2, T3 and T4 是子树
z y
/ \ / \
y T4 右旋(z) x z
/ \ - - - - - - - - -> / \ / \
x T3 T1 T2 T3 T4
/ \
T1 T2
b左 右:
z z x
/ \ / \ / \
y T4 左旋(y) x T4 右旋(z) y z
/ \ - - - - - - - - -> / \ - - - - - - - -> / \ / \
T1 x y T3 T1 T2 T3 T4
/ \ / \
T2 T3 T1 T2
c)右 右:
z y
/ \ / \
T1 y 左旋(z) z x
/ \ - - - - - - - -> / \ / \
T2 x T1 T2 T3 T4
/ \
T3 T4
c)右 左:
z z x
/ \ / \ / \
T1 y 右旋 (y) T1 x 左旋(z) z y
/ \ - - - - - - - - -> / \ - - - - - - - -> / \ / \
x T4 T2 y T1 T2 T3 T4
/ \ / \
T2 T3 T3 T4
插入的例子:
C语言代码实现:
// C program to insert a node in AVL tree
#include<stdio.h>
#include<stdlib.h>
// An AVL tree node
struct Node
{
int key;
struct Node *left;
struct Node *right;
int height;
};
// A utility function to get maximum of two integers
int max(int a, int b);
// A utility function to get the height of the tree
int height(struct Node *N)
{
if (N == NULL)
return 0;
return N->height;
}
// A utility function to get maximum of two integers
int max(int a, int b)
{
return (a > b)? a : b;
}
/* Helper function that allocates a new node with the given key and
NULL left and right pointers. */
struct Node* newNode(int key)
{
struct Node* node = (struct Node*)
malloc(sizeof(struct Node));
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 1; // new node is initially added at leaf
return(node);
}
// A utility function to right rotate subtree rooted with y
// See the diagram given above.
struct Node *rightRotate(struct Node *y)
{
struct Node *x = y->left;
struct Node *T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = max(height(y->left), height(y->right))+1;
x->height = max(height(x->left), height(x->right))+1;
// Return new root
return x;
}
// A utility function to left rotate subtree rooted with x
// See the diagram given above.
struct Node *leftRotate(struct Node *x)
{
struct Node *y = x->right;
struct Node *T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = max(height(x->left), height(x->right))+1;
y->height = max(height(y->left), height(y->right))+1;
// Return new root
return y;
}
// Get Balance factor of node N
int getBalance(struct Node *N)
{
if (N == NULL)
return 0;
return height(N->left) - height(N->right);
}
// Recursive function to insert a key in the subtree rooted
// with node and returns the new root of the subtree.
struct Node* insert(struct Node* node, int key)
{
/* 1. Perform the normal BST insertion */
if (node == NULL)
return(newNode(key));
if (key < node->key)
node->left = insert(node->left, key);
else if (key > node->key)
node->right = insert(node->right, key);
else // Equal keys are not allowed in BST
return node;
/* 2. Update height of this ancestor node */
node->height = 1 + max(height(node->left),
height(node->right));
/* 3. Get the balance factor of this ancestor
node to check whether this node became
unbalanced */
int balance = getBalance(node);
// If this node becomes unbalanced, then
// there are 4 cases
// Left Left Case
if (balance > 1 && key < node->left->key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node->right->key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node->left->key)
{
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key)
{
node->right = rightRotate(node->right);
return leftRotate(node);
}
/* return the (unchanged) node pointer */
return node;
}
// A utility function to print preorder traversal
// of the tree.
// The function also prints height of every node
void preOrder(struct Node *root)
{
if(root != NULL)
{
printf("%d ", root->key);
preOrder(root->left);
preOrder(root->right);
}
}
/* Drier program to test above function*/
int main()
{
struct Node *root = NULL;
/* Constructing tree given in the above figure */
root = insert(root, 10);
root = insert(root, 20);
root = insert(root, 30);
root = insert(root, 40);
root = insert(root, 50);
root = insert(root, 25);
/* The constructed AVL Tree would be
30
/ \
20 40
/ \ \
10 25 50
*/
printf("Preorder traversal of the constructed AVL"
" tree is \n");
preOrder(root);
return 0;
}
输出:
Preorder traversal of the constructed AVL tree is
30 20 10 25 40 50