太久没看快速排序的思想了,找了半天博客硬是没有看懂。可能不符合自己口味,还是自己记录一下把。
大概思想:就是找一个基准数,一般是第一个(下边的例子选择的是5),先从右往左找一个小于基准数的数字(索引 j ),然后再从左往右边找一个大于基准数的(索引 i ),(其中这两个索引不能交叉,即代码中的 i,j 不能相等),然后将找到的两个数进行交换,一直重复这个过程,直到 i 和 j 碰头( i == j),最后要注意将基准数归位,这样每一轮下来,都能将至少一个数字归位(基准数,后面基准数会变化),并且将比基准数大的数字放在它的右边,这样后面就能用分治的思想了。记得结合代码看!
来看第一轮变化
原始数组 5 6 7 4 1 2 3 长度为7
变化一 5 3 7 4 1 2 6 ( 此时 j = 6,i = 1 )
变化二 5 3 2 4 1 7 6 ( 此时 j = 5,i = 2 )
此时 i == j ( 4 ),跳出代码中的循环
然后将基准数归位,将 i 和 j 共同指向的元素放在第一位变成
1 3 2 4 5 7 6 (这就是完整的一轮,此时5的位置就是它的最终位置)
后面就是重复(代码看仔细了,出现了分治的思想,不多说)这个过程,每一轮都至少有一个数字正确归位。
后续变化 ,一定要注意分治
代码来自
#include <stdio.h>
int a[101],n;//定义全局变量,这两个变量需要在子函数中使用
void quicksort(int left, int right) {
int i, j, t, temp;
if(left > right)//无法分割
return;
temp = a[left]; //temp中存的就是基准数
i = left;
j = right;
while(i != j) {
// 顺序变了就错
while(a[j] >= temp && i < j)//从右边往左边开始找,找到一个小于基准数的
j--;
while(a[i] <= temp && i < j)//再找从左边往右边找 ,找到一个大于基准数的
i++;
if(i < j)//交换两个数在数组中的位置
{
t = a[i];
a[i] = a[j];
a[j] = t;
}
}
//最终将基准数归位
a[left] = a[i];
a[i] = temp;
quicksort(left, i-1);//继续处理左边的,这里是一个递归的过程
quicksort(i+1, right);//继续处理右边的 ,这里是一个递归的过程
}
int main() {
int i;
//读入数据
scanf("%d", &n);
for(i = 1; i <= n; i++)
scanf("%d", &a[i]);
quicksort(1, n); //快速排序调用
//输出排序后的结果
for(i = 1; i < n; i++)
printf("%d ", a[i]);
printf("%d\n", a[n]);
return 0;
}
Java版
class Solution {
public int[] sortArray(int[] nums) {
quickSort(nums, 0, nums.length - 1);
return nums;
}
public void quickSort(int[] nums, int left, int right) {
if (left >= right) {
return;
}
int sentinal = nums[left];
int i = left, j = right;
while (i < j) {
while (nums[j] >= sentinal && i < j) {
j--;
}
while (nums[i] <= sentinal && i < j) {
i++;
}
if (i < j) swap(nums, i, j);
}
nums[left] = nums[i];
nums[i] = sentinal;
quickSort(nums, left, i - 1);
quickSort(nums, i + 1, right);
}
public void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}