前言
今天主要针对二叉树的前中后三种遍历顺序,练习递归、迭代、统一迭代三种不同的遍历方式。
力扣对应题目为:144. 二叉树的前序遍历、145. 二叉树的后序遍历 和 94. 二叉树的中序遍历。
递归遍历
思路比较容易,以前序遍历为例:
class Solution {
public:
void preorder(TreeNode* root, vector<int>& res){
if (root == NULL) return;
res.push_back(root->val);
preorder(root->left, res);
preorder(root->right, res);
}
vector<int> preorderTraversal(TreeNode* root) {
vector<int> res;
preorder(root, res);
return res;
}
};
迭代遍历
用栈实现二叉树的遍历。
前序遍历代码如下,注意需要先压右子树进去,这样出栈时才能左子树先出:
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
stack<TreeNode*> stk;
vector<int> res;
if (root == NULL) return res;
stk.push(root);
while (!stk.empty()){
TreeNode* node = stk.top();
stk.pop();
res.push_back(node->val);
if (node->right) stk.push(node->right);
if (node->left) stk.push(node->left);
}
return res;
}
};
后序遍历将左子树先压入,这样出来的顺序是中右左,再将res结果向量反转,就得到了左右中。
中序遍历代码与前两种有较大差别。首先可以将左节点也看作一个中节点,中序遍历一颗树,就需要进入当前节点下最左的中节点,并将沿路的节点压入栈中作为路标。当处理完一层的中节点,就去处理其右子树部分。代码如下:
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> result;
stack<TreeNode*> stk;
TreeNode* cur = root;
while (cur != NULL || !stk.empty()) {
if (cur != NULL) { // 指针来访问节点,访问到最底层
stk.push(cur); // 将访问的节点放进栈
cur = cur->left; // 进入左子树
} else {
cur = stk.top(); // 如果当前节点已经是最左,则记录数据
stk.pop();
result.push_back(cur->val);
cur = cur->right; //记录当前节点数据后,进入其右子树
}
}
return result;
}
};
迭代的统一版本写法
- TBC