初等函数包括几类基本的函数:代数函数、三角函数、指数函数和对数函数。它们的定义、性质及图像在数学中占据重要地位。
1. 代数函数(Algebraic Functions)
代数函数由有限次的加、减、乘、除和求幂运算构成。具体包括多项式函数、有理函数和无理函数。
1.1 多项式函数(Polynomial Functions)
多项式函数是形如 f ( x ) = a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 f(x)=anxn+an−1xn−1+⋯+a1x+a0 的函数,其中 a i a_i ai 是常数, n n n 是非负整数。
-
性质:
- 定义域: 所有实数。
- 值域:所有实数。
- 连续性: 多项式函数在其定义域内处处连续。
- 可导性: 多项式函数在其定义域内处处可导。
- 对称性:
- 偶次多项式函数关于 y 轴对称,例如 f ( x ) = x 2 f(x) = x^2 f(x)=x2。
- 奇次多项式函数关于原点对称,例如 f ( x ) = x 3 f(x) = x^3 f(x)=x3。
- 端行为: 高次项 a n x n a_n x^n anxn 决定函数的端行为。若 a n > 0 a_n > 0 an>0,则在 x → ∞ x \to \infty x→∞ 时, f ( x ) → ∞ f(x) \to \infty f(x)→∞;若 a n < 0 a_n < 0 an<0,则在 x → ∞ x \to \infty x→∞ 时, f ( x ) → − ∞ f(x) \to -\infty f(x)→−∞。
- 零点:多项式函数最多有 n n n 个实数零点(重根按重数计算),其中 n n n 是多项式的最高次数。
-
基本性质:
- 零点: f ( x ) = 0 f(x) = 0 f(x)=0 处的零点可以通过因式分解或使用求根公式求解。
- 极值点:多项式函数在其导函数 f ′ ( x ) f'(x) f′(x) 的零点处取得极值。
- 凹凸性:多项式函数在其二阶导数 f ′ ′ ( x ) f''(x) f′′(x) 的零点处取得凹凸性的变化点。
例:
- 二次多项式: f ( x ) = 3 x 2 + 2 x + 1 f(x) = 3x^2 + 2x + 1 f(x)=3x2+2x+1,其图像是开口向上的抛物线。
- 三次多项式: g ( x ) = − x 3 + 4 x g(x) = -x^3 + 4x g(x)=−x3+4x,其图像是有一个拐点的曲线。
1.2 有理函数(Rational Functions)
有理函数是两个多项式的商,形如 f ( x ) = P ( x ) Q ( x ) f(x) = \frac{P(x)}{Q(x)} f(x)=Q(x)P(x),其中 P ( x ) P(x) P(x) 和 Q ( x ) Q(x) Q(x) 都是多项式,且 Q ( x ) ≠ 0 Q(x) \neq 0 Q(x)=0。
-
性质:
- 定义域: 使分母不为零的所有实数。
- 间断点: 在分母为零的点处有间断或垂直渐近线。
- 端行为: 由分子和分母的最高次项决定。
- 若 deg ( P ) < deg ( Q ) \deg(P) < \deg(Q) deg(P)<deg(Q),则 f ( x ) → 0 f(x) \to 0 f(x)→0 当 x → ± ∞ x \to \pm \infty x→±∞。
- 若 deg ( P ) = deg ( Q ) \deg(P) = \deg(Q) deg(P)=deg(Q),则 f ( x ) → a n b n f(x) \to \frac{a_n}{b_n} f(x)→bnan 当 x → ± ∞ x \to \pm \infty x→±∞,其中 a n a_n an 和 b n b_n bn 分别是 P P P 和 Q Q Q 的最高次项系数。
- 若 deg ( P ) > deg ( Q ) \deg(P) > \deg(Q) deg(P)>deg(Q),则 f ( x ) → ± ∞ f(x) \to \pm \infty f(x)→±∞ 当 x → ± ∞ x \to \pm \infty x→±∞。
- 水平渐近线:如果 deg ( P ) = deg ( Q ) \deg(P) = \deg(Q) deg(P)=deg(Q),水平渐近线是 y = a n b n y = \frac{a_n}{b_n} y=bnan。
- 斜渐近线:如果 deg ( P ) = deg ( Q ) + 1 \deg(P) = \deg(Q) + 1 deg(P)=deg(Q)+1,则函数可能有斜渐近线,可以通过长除法找到。
-
基本性质:
- 连续性:在定义域内连续,但在使分母为零的点处不连续。
- 垂直渐近线:在 Q ( x ) = 0 Q(x) = 0 Q(x)=0 处的 x x x 值对应的垂直渐近线。
- 水平或斜渐近线:根据分子和分母最高次项系数的关系确定。
例:
- f ( x ) = x 2 + 1 x − 1 f(x) = \frac{x^2 + 1}{x - 1} f(x)=x−1x2+1,在 x = 1 x = 1 x=1 处有垂直渐近线。
- g ( x ) = 2 x + 3 x 2 − 4 g(x) = \frac{2x + 3}{x^2 - 4} g(x)=x2−42x+3,在 x = ± 2 x = \pm 2 x=±2 处有垂直渐近线。
1.3 无理函数(Irrational Functions)
无理函数包含根号运算,形如 f ( x ) = P ( x ) f(x) = \sqrt{P(x)} f(x)=P(x),其中 P ( x ) P(x) P(x) 是多项式。
-
性质:
- 定义域: 使根号内的表达式非负的所有实数。
- 连续性: 通常在根号内表达式为零处有端点,但如果根号内表达式是非负且连续的多项式,无理函数是连续的。
- 可导性:无理函数在根号内表达式不为零的地方是可导的。
-
基本性质:
- 无理函数在定义域内可能有端点。
- 在端点处可能不可导。
- 在定义域内其他地方是连续和可导的。
例:
- f ( x ) = x f(x) = \sqrt{x} f(x)=x,定义域为 [ 0 , ∞ ) [0, \infty) [0,∞),在 x = 0 x = 0 x=0 处有端点。
- g ( x ) = x 2 + 1 g(x) = \sqrt{x^2 + 1} g(x)=x2+1,定义域为所有实数。
2. 三角函数(Trigonometric Functions)
三角函数在描述周期现象和波动方面非常重要。主要的三角函数有正弦函数、余弦函数和正切函数。
2.1 正弦函数(Sine Function)
正弦函数 sin ( x ) \sin(x) sin(x) 描述的是单位圆上角度 x x x 的终点的 y 坐标。
-
性质:
- 定义域: 所有实数。
- 值域: ([-1, 1])。
- 周期性: 周期为 2 π 2\pi 2π,即 sin ( x + 2 π ) = sin ( x ) \sin(x + 2\pi) = \sin(x) sin(x+2π)=sin(x)。
- 对称性: 奇函数,即 sin ( − x ) = − sin ( x ) \sin(-x) = -\sin(x) sin(−x)=−sin(x)。
- 零点: sin ( x ) = 0 \sin(x) = 0 sin(x)=0 当且仅当 x = k π x = k\pi x=kπ,其中 k k k 是整数。
-
基本性质:
- 极大值: 1 1 1,在 x = π 2 + 2 k π x = \frac{\pi}{2} + 2k\pi x=2π+2kπ 处取得,其中 k k k 是整数。
- 极小值: − 1 -1 −1,在 x = 3 π 2 + 2 k π x = \frac{3\pi}{2} + 2k\pi x=23π+2kπ 处取得,其中 k k k 是整数。
- 波峰波谷:周期性极值点处有波峰(极大值)和波谷(极小值)。
例:
- sin ( x ) \sin(x) sin(x) 的图像是一条周期为 2 π 2\pi 2π 的正弦波。
2.2 余弦函数(Cosine Function)
余弦函数 cos ( x ) \cos(x) cos(x) 描述的是单位圆上角度 x x x 的终点的 x 坐标。
-
性质:
- 定义域: 所有实数。
- 值域: ([-1, 1])。
- 周期性: 周期为 2 π 2\pi 2π,即 cos ( x + 2 π ) = cos ( x ) \cos(x + 2\pi) = \cos(x) cos(x+2π)=cos(x)。
- 对称性: 偶函数,即 cos ( − x ) = cos ( x ) \cos(-x) = \cos(x) cos(−x)=cos(x)。
- 零点: cos ( x ) = 0 \cos(x) = 0 cos(x)=0 当且仅当 x = π 2 + k π x = \frac{\pi}{2} + k\pi x=2π+kπ,其中 k k k 是整数。
-
基本性质:
- 极大值: 1 1 1,在 x = 2 k π x = 2k\pi x=2kπ 处取得,其中 k k k 是整数。
- 极小值: − 1 -1 −1,在 x = π + 2 k π x = \pi + 2k\pi x=π+2kπ 处取得,其中 k k k 是整数。
- 波峰波谷:周期性极值点处有波峰(极大值)和波谷(极小值)。
例:
- cos ( x ) \cos(x) cos(x) 的图像是一条周期为 2 π 2\pi 2π 的余弦波。
2.3 正切函数(Tangent Function)
正切函数 tan ( x ) \tan(x) tan(x) 描述的是正弦函数与余弦函数的比值,即 tan ( x ) = sin ( x ) cos ( x ) \tan(x) = \frac{\sin(x)}{\cos(x)} tan(x)=cos(x)sin(x)。
-
性质:
- 定义域: { x ∈ R ∣ x ≠ π 2 + k π , k ∈ Z } \{x \in \mathbb{R} \mid x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\} {x∈R∣x=2π+kπ,k∈Z}。
- 值域: 所有实数。
- 周期性: 周期为 π \pi π,即 tan ( x + π ) = tan ( x ) \tan(x + \pi) = \tan(x) tan(x+π)=tan(x)。
- 对称性: 奇函数,即 tan ( − x ) = − tan ( x ) \tan(-x) = -\tan(x) tan(−x)=−tan(x)。
- 零点: tan ( x ) = 0 \tan(x) = 0 tan(x)=0 当且仅当 x = k π x = k\pi x=kπ,其中 k k k 是整数。
- 垂直渐近线:在 x = π 2 + k π x = \frac{\pi}{2} + k\pi x=2π+kπ 处有垂直渐近线。
-
基本性质:
- 无极大值和极小值。
- 周期性渐近线:在每个周期结束时趋向 ± ∞ \pm \infty ±∞ 或 ∓ ∞ \mp \infty ∓∞。
例:
- tan ( x ) \tan(x) tan(x) 的图像是周期为 π \pi π 的正切波,每个周期内有两个垂直渐近线。
3. 指数函数(Exponential Functions)
指数函数是形如 f ( x ) = a x f(x) = a^x f(x)=ax 的函数,其中 a a a 是常数, a > 0 a > 0 a>0 且 a ≠ 1 a \neq 1 a=1。
3.1 常见形式
- e x e^x ex,其中 e e e 是自然对数的底数,约等于 2.71828。
- a x a^x ax,例如 2 x 2^x 2x, 1 0 x 10^x 10x 等。
3.2 性质
- 定义域: 所有实数。
- 值域: 所有正实数。
- 单调性:
- 若 a > 1 a > 1 a>1,则 a x a^x ax 是单调递增的。
- 若 0 < a < 1 0 < a < 1 0<a<1,则 a x a^x ax 是单调递减的。
- 连续性: 在定义域内连续。
- 可导性:在定义域内可导,且导数为 a x ln ( a ) a^x \ln(a) axln(a)。
- 端行为:
- 若 a > 1 a > 1 a>1,则 a x a^x ax 随 x → ∞ x \to \infty x→∞ 发散到 ∞ \infty ∞,随 x → − ∞ x \to -\infty x→−∞ 收敛到 0。
- 若 0 < a < 1 0 < a < 1 0<a<1,则 a x a^x ax 随 x → ∞ x \to \infty x→∞ 收敛到 0,随 x → − ∞ x \to -\infty x→−∞ 发散到 ∞ \infty ∞。
- 指数定律:
- a x + y = a x a y a^{x+y} = a^x a^y ax+y=axay
- ( a x ) y = a x y (a^x)^y = a^{xy} (ax)y=axy
- a − x = 1 a x a^{-x} = \frac{1}{a^x} a−x=ax1
3.3 基本性质
- e 0 = 1 e^0 = 1 e0=1
- e 1 = e e^1 = e e1=e
- e − 1 = 1 e e^{-1} = \frac{1}{e} e−1=e1
例:
- f ( x ) = 2 x f(x) = 2^x f(x)=2x,在 x = 0 x = 0 x=0 处值为 1,随 x x x 增大迅速增长。
- g ( x ) = e x g(x) = e^x g(x)=ex,在 x = 0 x = 0 x=0 处值为 1,随 x x x 增大迅速增长。
4. 对数函数(Logarithmic Functions)
对数函数是指数函数的逆函数。形如 f ( x ) = log a ( x ) f(x) = \log_a(x) f(x)=loga(x),其中 a a a 是常数且 a > 0 a > 0 a>0, a ≠ 1 a \neq 1 a=1。
4.1 常见形式
- ln ( x ) \ln(x) ln(x),即以 e e e 为底的对数。
- log 10 ( x ) \log_{10}(x) log10(x),即常用对数,以 10 为底。
4.2 性质
- 定义域: ( 0 , ∞ ) (0, \infty) (0,∞)。
- 值域: 所有实数。
- 单调性:
- 若 a > 1 a > 1 a>1,则 log a ( x ) \log_a(x) loga(x) 是单调递增的。
- 若 0 < a < 1 0 < a < 1 0<a<1,则 log a ( x ) \log_a(x) loga(x) 是单调递减的。
- 连续性: 在定义域内连续。
- 可导性:在定义域内可导,且导数为 1 x ln ( a ) \frac{1}{x \ln(a)} xln(a)1。
- 对数定律:
- log a ( x y ) = log a ( x ) + log a ( y ) \log_a(xy) = \log_a(x) + \log_a(y) loga(xy)=loga(x)+loga(y)
- log a ( x y ) = log a ( x ) − log a ( y ) \log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y) loga(yx)=loga(x)−loga(y)
- log a ( x y ) = y log a ( x ) \log_a(x^y) = y\log_a(x) loga(xy)=yloga(x)
- 换底公式: log a ( x ) = log b ( x ) log b ( a ) \log_a(x) = \frac{\log_b(x)}{\log_b(a)} loga(x)=logb(a)logb(x),其中 b b b 是任意正数且不等于 1。
4.3 基本性质
- ln ( 1 ) = 0 \ln(1) = 0 ln(1)=0
- ln ( e ) = 1 \ln(e) = 1 ln(e)=1
- ln ( 1 e ) = − 1 \ln\left(\frac{1}{e}\right) = -1 ln(e1)=−1
例:
- f ( x ) = ln ( x ) f(x) = \ln(x) f(x)=ln(x),在 x = 1 x = 1 x=1 处值为 0,随 x x x 增大缓慢增长。
- g ( x ) = log 10 ( x ) g(x) = \log_{10}(x) g(x)=log10(x),在 x = 1 x = 1 x=1 处值为 0,随 x x x 增大缓慢增长。