自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 Siamese框架+注意力机制的目标追踪

文章目录ATOM笔记ATOM笔记【阅读笔记】ATOM: Accurate Tracking by Overlap Maximization 这篇写的很详细目标跟踪解析:ATOM:Accurate Tracking by Overlap Maximization

2021-04-20 17:18:18 1787

原创 pysot下的pytorch代码含义

argparse.ArgumentParserargparse是一个Python模块:命令行选项、参数和子命令解析器。主要有三个步骤:创建 ArgumentParser() 对象调用 add_argument() 方法添加参数使用 parse_args() 解析添加的参数222

2021-03-28 17:30:22 756

原创 在pysot中的SiamRPN and SiamRPN++论文结构和代码对应分析

文章目录前言一、SiamRPN and SiamRPN+ + 整体结构SiamRPN前言学习过程,记录一下SiamRPN论文每一部分对应代码,以便之后用。一、SiamRPN and SiamRPN+ + 整体结构SiamRPN整体流程为:template frame和detection frame经过相同的Siamese Network得到一个feature,然后经过RPN的classification branch和regression branch,做一个互相关操作。分类分

2021-03-28 17:29:13 4811 4

转载 VOT中的EAO评判指标

文章目录1.期望覆盖率 1.1 A和R 1.2 理想EAO 1.3 标准EAO 2.实际计算 2.1估算EAO 2.2 EAO与R的关系 看VOT竞赛报告时,经常会看到一个奇怪的现象,精度A和鲁棒性R的排名都靠前,而EAO,即期望平均覆盖率却不靠前,vice versa,这是怎么回事呢,这篇文章就来说说EAO的计算方法。1.期望覆盖率1.1 A和R看上图,今年的VOT18结果,看看EAO第一的LADCF,A和R都不是第一.

2021-01-19 16:52:39 2149

原创 Siamese系列文章

说明在学习目标追踪方面,慢慢读懂论文,记录论文的笔记,同时贴上一些别人写的非常优秀的帖子。综述类型笔记目标跟踪之Siamese网络单目标跟踪paper小综述SiamFCSiamRPN1.SiamRPN阅读笔记:High Performance Visual Tracking with Siamese Region Proposal Network 写的很好,重点看!!!!2.【论文笔记】CVPR2018_SiamRPN3.SiamRPN 论文理解4.关于RPN的理解一文读懂Faster

2021-01-07 20:48:01 1257

原创 tensorflow中用到的一些代码含义总结

在读SiamFC代码时候,因为是初学者,对于很多函数不明白什么意思,每次查完标记在文档里,下次遇到还需要查,所以这里我自己总结一份,方便查阅一下,了解一下最基础的意思。

2021-01-04 22:31:37 1819

原创 目标追踪算法总结

声明CSDN和知乎很多大佬都对这个方面进行了介绍,这里自己参考他们总结一下,理清楚自己的方向,方便自己看。1.点击这里,https://www.zhihu.com/question/26493945/answer/156025576来源知乎2.点击这里,https://blog.csdn.net/sinat_31184961/article/details/99993350来源CSDN目标追踪算法目标追踪算法目前很经典题目,但事实上,我们并不需要那些曾经辉煌但已被拍在沙滩上的tracke

2020-12-22 16:09:57 4342

原创 算法时间复杂度和空间复杂度分析

时间复杂度循环计算每一步,得到时间和N的关系,当N很大时候,可以忽略掉小的。如上图,其实就是比较一下,求极限看是同阶还是,口诀,常对幂指阶(K,log,X^,a^x,x!)下图,指数型时间不同情况下:在评判算法时候,只考虑最坏和平均复杂度空间复杂度看存放数据内存的大小来判断递归带来的内存开销:终于搞懂了,时间复杂度和空间复杂度简单的解释了。...

2020-12-18 15:20:36 261 1

原创 深度学习第四课程笔记-人脸识别

sad阿萨德as阿萨德大所发生的发送目录sad阿萨德as阿萨德大所发生的发送到发送到到发送到

2020-12-08 19:40:16 343

原创 深度学习第四课程笔记-卷积神经网络之目标检测

目标定位在图片中,需要定位到我们的目标,采用下图的方式:这里Y输出有8个量,分别是PC(判断是否是我们的目标),bx,by代表目标中心位置,bh,bw代表目标长宽,c1,c2,c3分别代表别的目标,误差函数也有所区别,当pc=1(也就是说图里面有我们要识别的目标,我们在,误差函数相应第一个)...

2020-12-05 22:45:15 1961

原创 深度学习第四课程笔记-卷积神经网络

第三周参数调试      每个超参数如果设置得不好,都会对训练产生巨大的负面影响,而这些超参数有一个相对重要排名如下图:学习率alpha,动量beta,Adam算法中的beta1,beta2,ε,层数layers,隐藏层数节点的数量hidden units,学习衰退率 learning rate decay,数据切分大小mini-batch size 等等。其中学习率alpha是最重要的,其次动量beta,隐藏层数节点的数量hidden u

2020-11-24 20:50:36 867 2

原创 深度学习第二课程笔记-第二周分割数据集以及优化梯度下降算法

深度学习第二课程笔记-第二周这部分包括  1. 分割数据集  2. 优化梯度下降算法:     2.1 不使用任何优化算法     2.2 mini-batch梯度下降法     2.3 使用具有动量的梯度下降算法     2.4 使用Adam算法        想象一下成本函数J ,最小化成本就像找到丘陵的最低点,在训练的每一步中,都会按照某个方向更新参数,以尽可能达到最低点。它类似于最快的下山的路,如下图:数据处

2020-11-23 15:05:19 404

原创 深度学习第二课程笔记-第一周正则化,梯度检验

深度学习第二课程笔记实际应用中,创建一个合适的训练集和测试集能大大提高我们的效率。训练集中,往往都是制作经精良,分辨率高的图片,而用户的测试中,可能只是随手拍,分辨率及照片质量较低的。基于这种情况,我们可以在训练集上训练尝试不同的模型框架,验证集评估这些框架,并且迭代选出适用的模型在进行时候,判断方差和偏差,如果过大,则进行模型的调整或者增大训练量,训练时间等等,反复尝试,直到拟合方差和偏差的理解:第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练集;我们看看这些数据,很明显,

2020-11-21 17:56:47 514

原创 深度学习第一课程笔记(2)

接深度学习第一课程笔记(1)更改不同数量的隐藏节点:plt.figure(figsize=(16, 32))hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50] #隐藏层数量for i, n_h in enumerate(hidden_layer_sizes): plt.subplot(5, 2, i + 1) plt.title('Hidden Layer of size %d' % n_h) parameters = nn_mode.

2020-11-17 22:27:57 398 2

原创 深度学习第一课程笔记(1)

第一周概论![基础神经网络](https://img-blog.csdnimg.cn/20201108204413484.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0RhX2hhaWh1YW5n,size_16,color_FFFFFF,t_70#pic_center)

2020-11-08 21:14:16 287

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除