1024. Palindromic Number (25)

400 ms

65536 kB

16000 B

Standard

CHEN, Yue

A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. For example, if we start from 67, we can obtain a palindromic number in 2 steps: 67 + 76 = 143, and 143 + 341 = 484.

Given any positive integer N, you are supposed to find its paired palindromic number and the number of steps taken to find it.

Input Specification:

Each input file contains one test case. Each case consists of two positive numbers N and K, where N (<= 1010) is the initial numer and K (<= 100) is the maximum number of steps. The numbers are separated by a space.

Output Specification:

For each test case, output two numbers, one in each line. The first number is the paired palindromic number of N, and the second number is the number of steps taken to find the palindromic number. If the palindromic number is not found after K steps, just output the number obtained at the Kth step and K instead.

Sample Input 1:
67 3

Sample Output 1:
484
2

Sample Input 2:
69 3

Sample Output 2:
1353
3
由于数字会超longlong int 所以用数组
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>
#include <map>
#include <string>

using namespace std;
typedef long long int LL;
char b[20005];
int a[20005];
int c[20005];
int k;
int len;
{
int i=0;
int j=0;
int num=0;
while((i<len&&j<len)||num!=0)
{
a[i]=(a[i]+c[j]+num);
num=a[i]/10;
a[i]%=10;
i++;
j++;
}
return i;
}
void fun()
{
int cnt=0;
for(int i=len-1;i>=0;i--)
c[cnt++]=a[i];
}
int judge()
{
int i=0;int j=len-1;
while(i<=j)
{
if(a[i]!=a[j])
return 0;
i++,j--;
}
return 1;
}
void output(int x)
{
for(int i=len-1;i>=0;i--)
printf("%d",a[i]);
cout<<endl;
cout<<x<<endl;
}
int main()
{
scanf("%s",b);
scanf("%d",&k);
int l=strlen(b);
len=l;
for(int i=0;i<len;i++)
a[i]=b[i]-'0';
if(judge())
{
output(0);
return 0;
}

for(int i=1;i<=k;i++)
{
fun();
if(judge())
{
output(i);
return 0;
}
}
output(k);
return 0;
}

PAT 甲级 1019 General Palindromic Number（简单题）

2016-05-30 17:50:28

【PAT】1024. Palindromic Number 回文反转相加

2013-11-22 22:42:59

PAT 1019 General Palindromic Number（进制水题）

2017-06-06 22:16:42

PAT(A) - 1144. The Missing Number (20)

2018-03-23 09:31:11

浙大pat甲级 1024

2016-08-14 14:28:00

PAT甲级1024

2017-01-23 14:09:33

PAT(甲级)1024

2015-09-24 19:40:57

浙大 PAT 1019. General Palindromic Number (20)

2014-03-04 14:44:45

PAT（甲级） 1024. Palindromic Number (25)

2018-02-18 09:15:18

1117. Eddington Number(25)-PAT甲级真题

2016-09-11 17:52:55

不良信息举报

PAT 甲级 1024 Palindromic Number