论文笔记:Knowledge-Augmented Language Model Promptingfor Zero-Shot Knowledge Graph Question Answering

论文来源:arxiv 202306

论文地址:2306.04136.pdf (arxiv.org)

论文代码:未公布

Baek J, Aji A F, Saffari A. Knowledge-Augmented Language Model Prompting for Zero-Shot Knowledge Graph Question Answering[J]. arXiv preprint arXiv:2306.04136, 2023.


Abstract

        LLM能够根据其在预训练过程中存储在参数中的内部知识进行零样本闭卷问答任务,但是这种内部知识可能是不正确的和过时的,导致LLM生成事实上错误的答案,此外,对LLM进行微调来更新其中的知识是昂贵的。为此,本文直接在LLM的输入中增加知识。具体来说,首先根据问题及相关事实之间的语义相似性从知识图谱中检索与输入问题相关的事实;然后,将检索到的事实以提示的形式与输入问题融合,并输入到LLM中,生成答案。KAPING框架不需要重新进行模型训练,因此可以适用于零样本场景。本文在KGQA任务上验证了KAPING框架的性能。

Introduction

### Memory-Augmented RAG 技术原理 Memory-Augmented RAG (Retrieval-and-Generation) 是一种增强型架构,在传统RAG基础上引入外部记忆机制,旨在提升模型处理复杂对话和长期依赖的能力。这种架构不仅利用了检索到的信息作为上下文输入给生成器,还通过额外的记忆组件存储过往交互记录以及重要知识点[^1]。 具体来说,当面对一个问题时,系统会先执行一次初步检索操作以获得最相关的文档片段;与此同时,访问内部维护的一个持久化数据库——即所谓的“memory store”。该store可以保存之前已经学习过的事实性陈述、用户偏好或者其他任何形式的知识积累。随后,这些来自不同源的数据会被融合起来供后续解码阶段使用,使得最终产生的回复更加精准且连贯[^5]。 对于技术实现而言,Memory-Augmented RAG通常涉及以下几个核心要素: - **高效索引结构**:为了快速定位所需资料,必须设计合理的索引方案以便于支持即时查询需求。 - **动态更新策略**:随着新信息不断涌入,如何保持内存内容的有效性和时效性成为一大挑战。因此需要制定一套完善的规则体系用于管理新增条目与过期项之间的平衡关系。 - **多模态集成能力**:考虑到实际场景下的多样性,除了纯文本外,图像、音频等多种形式的内容也应被纳入考量范畴之内,进而拓宽系统的感知边界[^2]。 ```python class MemoryAugmentedRAG: def __init__(self, memory_store): self.memory_store = memory_store def retrieve(self, query): # 执行常规检索流程... # 同步读取关联记忆单元 related_memories = self.memory_store.get_related_entries(query) return combined_context def generate_response(self, context): pass # 实现响应生成逻辑 ``` ### 应用场景分析 在客服机器人领域,Memory-Augmented RAG可以帮助机器更好地理解客户意图,并给出更为个性化的建议和服务体验。例如,在线旅游平台可以根据游客的历史浏览行为推荐相似目的地或活动项目;电商平台则能依据购买历史预测潜在兴趣商品并适时推送促销优惠信息[^3]。 教育辅助工具同样可以从这项技术创新中受益匪浅。教师可以通过定制专属的学习路径引导学生逐步掌握课程要点;而学生们也能借助内置的智能导师随时解答疑惑,巩固薄弱环节,形成良性循环的学习模式[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值