论文来源:arxiv 202306
论文地址:2306.04136.pdf (arxiv.org)
论文代码:未公布
Baek J, Aji A F, Saffari A. Knowledge-Augmented Language Model Prompting for Zero-Shot Knowledge Graph Question Answering[J]. arXiv preprint arXiv:2306.04136, 2023.
Abstract
LLM能够根据其在预训练过程中存储在参数中的内部知识进行零样本闭卷问答任务,但是这种内部知识可能是不正确的和过时的,导致LLM生成事实上错误的答案,此外,对LLM进行微调来更新其中的知识是昂贵的。为此,本文直接在LLM的输入中增加知识。具体来说,首先根据问题及相关事实之间的语义相似性从知识图谱中检索与输入问题相关的事实;然后,将检索到的事实以提示的形式与输入问题融合,并输入到LLM中,生成答案。KAPING框架不需要重新进行模型训练,因此可以适用于零样本场景。本文在KGQA任务上验证了KAPING框架的性能。