综述类_网络入侵检测技术综述

网络入侵检测技术综述

链接:百度网盘链接
提取码:tktt

大纲

1:入侵检测系统的详细分类
2:传统机器学习技术在入侵检测领域的应用现状
3:深度学习方法在入侵检测领域的应用情况
4:强化学习方法
5:对可视化分析技术在入侵检测的应用进行阐述
6:总结

一、入侵检测系统分类

在这里插入图片描述

1.基于数据来源划分

  1. 基于主机的IDS(HIDS)

    位于被监视系统上的软件组件。主要检测系统事件,分析与操作系统信息相关的事件,通过浏览日志,系统调用,文件系统修改及其他状态和活动来检测入侵

    优点:能够在发送和接收数据前通过扫描流量活动来检测内部威胁
    缺点:只监视主机,需要安装在每个主机上,且无法观测网络流量,无法分析与网络相关的行为信息

  2. 基于网络的IDS(NIDS)

    观察并分析实时网络流量和监视多个主机。旨在手机数据包信息,并查看其中内容,以检测网络中的入侵行为。

    优点:只有一个系统监视网络,不必在每个主机上安装,节省成本和时间
    缺点:难以获取所监视系统的内部状态信息,导致检测更加困难

    基于网络的数据:

    基于流:只包含网络连接相关的元信息
    基于包:还包含有效载荷

    数据集:

    DARPA1998、DARPA1999、KDD1999、NSL-KDD、Gure-KDD、CIDDS-001、
    CICIDS2017、ISCX2012、Kyoto2006、UNSW-NB15

2.基于检测技术划分

  1. 基于误用的IDS(MIDS):黑名单

    也称为基于签名的IDS,是将传入的网络流量与已知签名进行匹配,一旦命中则报警

    三种方法:状态建模、字符串匹配、专家系统

    缺点:无法检测未知攻击,所以基于异常的IDS是目前研究和开发的重点

  2. 基于异常的IDS(AIDS):白名单

    对系统异常的行为进行检测,当检测行为与正常行为偏离较大时,发出告警信息

二、基于传统机器学习的入侵检测

入侵数据处理、监督机器学习技术、非监督机器学习技术

1.入侵数据处理

  1. 大规模入侵检测数据集中包含了基本特征内容特征流量特征

    基本特征:TCP连接的特征

    持续时间、协议类型、源字节数目、目的字节数目等

    内容特征:从数据包提取的特征

    登陆失败次数、创建的文件数目、获取的文件数目等

    流量特征:与流量传输相关的特征

    源主机数目、目的主机数目等

    不同的入侵检测数据集包含的特征也存在差异,要具体分析

  2. 数据集预处理

    符号特征数据化

    使用独热编码等编码方式对数据进行映射处理

    数据特征归一化

    使用min-max、Z-score等归一化方法将数据数值缩小至同一量纲

  3. 特征工程

    对数据集进行特征选择 / 提取能够去除冗余数据、降低特征维度、减小计算开销, 提升分类器的泛化能力和检测性能。

    特征选择:

    过滤式方法

    信息增益、相关系数等

    封装式方法

    遗传算法等

    嵌入式方法

    正则化方法,如LASSO回归

    特征提取:

    线性变换方法

    主成分分析、线性鉴别方法等

    非线性变换方法

    基于核方法的PCA等

对大量论文进行综合分析后发现,决定入侵检测性能的重要特征通常是基本特征流量特征

2.监督机器学习技术

优点:能够充分利用先验知识,明确地对未知样本数据进行分类
缺点:训练数据的选取评估标注需要花费大量的人力和时间

  1. 生成方法(概率方法):

    生成方法反应的是同类流量数据的相似度

    朴素贝叶斯、贝叶斯网络、隐马尔可夫模型

    优点:
    (1)在数据不完整的情况下,仍能检测异常
    (2)可以学习存在因变量的模型
    (3)收敛速度快

    缺点:
    (1)需要更多的计算资源
    (2)仅用于分类任务时,存在较多冗余信息,且学习和计算的过程较复杂

  2. 判别方法(非概率方法):

    判别方法反映的是正常流量和异常流量数据之间的差异

    K-近邻、决策树、支持向量机、逻辑回归

    优点:
    (1)直接面对预测问题,准确率更高
    (2)可以对输入数据进行各种程度的抽象,从而简化学习问题
    (3)对于分类任务,冗余信息少,节省计算资源

    缺点:
    (1)难以反应数据本身的特性
    (2)数据缺失和异常值对预测结果影响较大

目前已有研究将两种方法结合,从而获得更大的优越性

3.无监督机器学习技术

  1. 常用的无监督机器学习技术

    k-means、层次聚类、高斯混合模型、主成分分析

  2. 无监督机器学习技术优缺点

    优点:不需要人为标注数据,减少了人为误差;降低计算开销,提升检测准确性
    缺点:需要对无监督处理结果进行大量分析;对于噪声和异常值敏感

4.小结

  1. 传统机器学习构建入侵检测系统的思路是:

    数据预处理 -> 特征工程 -> 选择用于分类的传统机器学习算法 -> 训练模型 -> 预测

    二分类:正常数据 / 异常数据
    多分类:攻击类型

  2. 对引用论文的分析得出的推论

    一般规律:
    (1)贝叶斯网络检测能力 > 朴素贝叶斯检测能力
    (2)基于树的方法的检测能力 > 基于概率的方法的检测能力,因为树方法计算复杂度低,能够处理不相关特征的数据
    (3)集成学习方法的检测能力 > 单个分类器的能检测能力,因为集成学习方法能捕获到更多信息

    目前基于传统机器学习方法的IDS需要解决的问题有:
    (1)误报率高、检测率低
    (2)数据特征维度高,数据量大导致检测困难、存在冗余无关数据,需要耗费大量时间
    (3)算法模型自身存在的问题,对算法进行改善
    (4)数据不平衡问题,正常数据数量远大于异常数据数量 (需要重点解决)

  3. 文献总结
    (1)使用的方法和性能
    在这里插入图片描述
    (2)解决的问题
    在这里插入图片描述

三、基于深度学习的入侵检测

生成方法、判别方法、生成对抗网络

1.生成方法

  1. 自动编码器(AE)

    输入层 —> 编码层 —> 解码层

    被广泛应用于入侵检测领域中的降维任务 ,可以对非线性信息进行降维

  2. 深度玻尔兹曼机(RBM)

    受限玻尔兹曼机:是一种通过输入数据集学习概率分布的随机生成神经网络,包含一层可视层和 一层隐藏层。

    深度玻尔兹曼机:由多层受限玻尔兹曼机叠加,是一个完全无向的模型。能够从大量无标签数据中学习出高阶特征,鲁棒性较好

  3. 深度信念网络(DBN)

    深度信念网络:是一种由若干层RBM和一层BP(反向传播)组成的有向深层神经网络。

    通过隐层提取特征使得后面层次的训练数据更具有代表性,还可以解决复杂高纬数据的检测问题

  4. 循环神经网络(RNN)

    循环神经网络:以序列数据为输入,在序列演进方向进行递归的神经网络。

    具有挖掘数据中的时序信息和语义信息的 深度表达能力。

    因为RNN存在梯度消失和梯度爆炸的问题,所以LSTM(长短期记忆网络)通过设计“门”结构实现信息的保留和选择的功能。GRU(门控循环单元)是LSTM的一种变体,与LSTM相比,GRU结构更简单,效果也很好。

2.判别方法

  1. 卷积神经网络(CNN)

    卷积神经网络:是一种包含了卷积计算且具有深度结构的前馈神经网络。

    能够更准确且高效地提取特征。

3.生成对抗网络

生成对抗网络(GAN):无监督学习方法,通过生成模型和判别模型的相互博弈学习产生高质量输出。

GAN能够处理数据类别不平衡问题。

4.小结

  1. 基于深度学习的IDS解决的问题

    (1)数据集不平衡问题
    (2)网络数据量较大、特征维度增加、浅层机器学习技术难以对海量高纬数据进行检测、难以提取数据中非线性特征信息
    (3)对算法模型本身进行改善

  2. 已有工作对上述问题的解决方案

    (1)算法级别上(成本函数)和数据级别上(欠采样和过采样等)和GAN
    (2)大部分深度学习算法如AE、DBM、DBN、LSTM、CNN等都已经用于解决这一问题
    (3)例如使用SVM替换softmax函数提升GRU模型的检测能力;使用遗传算法来优化DBN结构等

  3. 基于深度学习的IDS面临的问题:

    (1)训练速度,计算存储问题。通常需要多个GPU来处理数据
    (2)模型调参问题。
    (3)模型优化问题。会遇到梯度消失,梯度爆炸,局部最优的问题
    (4)实时检测问题。

  4. 文献总结
    (1)使用的方法和任务
    在这里插入图片描述
    (2)解决的问题
    在这里插入图片描述

四、基于强化学习的入侵检测

强化学习(RL):是用于描述和解决代理在动态环境的交互过程中通过对策略的学习,达到回报最大化或者 达到特定目标的问题。

可以为复杂的随机任务自动构建顺序最优策略。

深度强化学习(DRL):
在这里插入图片描述
优点:能够具有类似高度非线性模型预测性能。预测耗费时间更少,且能够处理高度不平衡的数据。
缺点:采样效率较低、奖励函数的设置困难、目标局部最优问题。

在这里插入图片描述

五、基于可视化分析的入侵检测

产生的背景:人工遍历警报日志需要耗费大量人力和时间。

网络安全可视化技术:通过将各种网络安全数据、警报信息等进行可视化,将抽象的信息转换为便于直观理解的图像信息,能够帮助安全管理人员快速识别潜在的异常事件和攻击行为。

基于可视化分析的入侵检测领域中常用的网络数据源包含:网络流量数据日志数据

在这里插入图片描述
面临的问题:

(1)如何实时显示并处理海量数据
(2)如何搭建入侵检测可视化协同工作环境
(3)如何提升入侵检测可视化系统的易用性、交互性、扩展性
(4)如何建立一套规范统一的可视化评估体系

六、总结

  1. 入侵检测数据的选择

    使用最广泛的公开数据集:KDD1999、DAPRA1998、DARPA1999。但是这些数据集年代久远

    新数据集:UNSW-NB15、CICIDS2017、CIDDS-001等,包含了一些新攻击类型,更有说服力

  2. 入侵检测面临的挑战

    海量高维数据、数据集不平衡、实时监测等

    (1)海量高维数据

    传统机器学习方法:聚类和降维,对数据的处理不深入
    深度学习方法:特征工程,训练过程复杂

    (2)数据不平衡

    成本函数
    欠采样:缩小了样本的整体数量
    过采样:容易发生过拟合问题
    GAN:生成异常数据来解决该问题

    (3)实时检测

    目前大部分的IDS都是使用公开数据集,研究离线的入侵检测。随着网络中数据规模的扩大,攻击种类和数量的增加,对攻击行为进行实时检测变得越发重要,实时的攻击检测是亟需解决的问题。

  3. 检测技术的发展

    深度学习方法、强化学习方法、可视化方法会应用的越来越广泛。这些方法进行组合也可以提升IDS的检测性能。

  4. 检测性能的评估

    通常准确率、检测率、精确率、F-measure值越高,误报率越低,IDS性能越好。

    在未来的研究中, 统一使用常用的评估指标对测试数据集的检测结果进行详细展示, 将有利于增加说服力, 能够较好地体现所提方法的泛化性能。

  • 13
    点赞
  • 155
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
Transformer是一种基于自注意力机制的神经网络模,最初用于自然语言处理任务,但也可以应用于其他领域,如网络入侵检测。Transformer模型通过多层的自注意力机制和前馈神经网络层来捕捉输入序列中的上下文信息。 在网络入侵检测中,Transformer可以用于对网络流量数据进行分和异常检测。下面是Transformer实现网络入侵检测的一般步骤: 1. 数据预处理:将网络流量数据转换为适合Transformer模型输入的格式。可以将网络流量数据划分为固定长度的时间窗口,并将每个时间窗口中的网络流量数据转换为向量表示。 2. 构建Transformer模型:构建一个包含多个编码器层和解码器层的Transformer模型。编码器层用于提取输入序列的特征表示,解码器层用于生成输出结果。 3. 自注意力机制:在编码器层中使用自注意力机制来捕捉输入序列中不同位置之间的依赖关系。自注意力机制可以根据输入序列中的上下文信息动态地计算每个位置的权重。 4. 前馈神经网络层:在自注意力机制之后,使用前馈神经网络层对每个位置的特征进行进一步处理和组合。 5. 分和异常检测:在解码器层中使用全连接层将特征表示映射到具体的分或异常检测结果。可以使用softmax函数进行多分,或者使用阈值判断是否为异常。 6. 模型训练和评估:使用标注的网络流量数据进行模型训练,并使用验证集进行模型调优和评估。可以使用交叉熵损失函数进行训练,并使用准确率、精确率、召回率等指标进行评估。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值