hdu 5067 状压DP 旅行商问题TSP

题目链接:hdu 5067

旅行商问题(TSP)

有一个商人要去n个城镇,给出这n个城镇的坐标(相互的距离),要求出一条每个点经过且只经过一次的最短路径。

状压DP比较适用于n比较小的TSP问题。

用dp【s】【v】表示当前的状态到最后目标位置所需走的最短距离。

s代表当前经过的城镇的集合,若s转化为二进制之后的第i位是1,说明已经走过了i城镇(即状态压缩)

v代表当前所在的城镇标号,仅使用其十进制下的意义,其二进制没有意义。

接下来就可以用记忆化搜索对状态进行dp。

dfs dp代码:

int pin(int s,int v)
{
    if(dp[s][v]!=inf)//若此状态之前已经得出,则直接返回
        return dp[s][v];
    if(s==(1<<st+1)-1)//若所有点已经全部访问过,则根据题目要求(通路、回路)进行下一步返回,这道题是回路
        return dp[s][v]=val[v][0];
    for(int u=0;u<=st;u++)
    {
        if(s>>u&1)//若第i位为1,因为不能走回头路,所以继续循环
            continue;
            dp[s][v]=min(dp[s][v],val[u][v]+pin(s|(1<<u),u));//把问题推给从s|1<<u点走再加上u和v的距离
    }
    return dp[s][v];
}

从代码里能看出,dp【s】【v】能从dp[s|1<<u][u]中推出,这里注意u∉s,转移到的状态就是dp【{s}U{u}】【u】

AC代码:

#include<iostream>
#include<cstdio>
#include<vector>
#include<set>
#include<map>
#include<string.h>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#define LL long long
#define mod 1000000007
#define inf 0x3f3f3f3f
#define sqr(a) (a)*(a)
#define lan(a,b) memset(a,b,sizeof(a))

using namespace std;

int a[60][60];
int dp[6010][20];
int val[20][20];
int po[20][3];
int st;

int pou(int x)
{
    if(x>0)
        return x;
    return -x;
}

int pin(int s,int v)
{
    if(dp[s][v]!=inf)
        return dp[s][v];
    //printf("----%d %d\n",s,v);
    if(s==(1<<st+1)-1)
        return dp[s][v]=val[v][0];
    for(int u=0;u<=st;u++)
    {
        if(s>>u&1)
            continue;
           // printf("u=%d\n",u);
            dp[s][v]=min(dp[s][v],val[u][v]+pin(s|(1<<u),u));
    }
   // printf("----%d %d\n",s,v);
    return dp[s][v];
}

int main()
{

    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        lan(po,0);
        lan(val,0);
        lan(dp,inf);
        lan(a,0);
        st=0;
        po[0][1]=0;
        po[0][2]=0;
        for(int i=0;i<n;i++)
            for(int j=0;j<m;j++)
            {
                scanf("%d",&a[i][j]);
                if(a[i][j])
                    {
                        if(i==0&&j==0)
                            continue;
                        po[++st][1]=i;
                        po[st][2]=j;
                    }
            }
            for(int i=0;i<=st;i++)
                for(int j=0;j<=st&&j!=i;j++)
                {
                    val[i][j]=val[j][i]=pou(po[i][1]-po[j][1])+pou(po[i][2]-po[j][2]);
                }

        printf("%d\n",pin(1,0));

    }
    return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值