三角形边角关系

三角形中边和角具有约束关系,若用三边和一角描述则可用余弦定理:

\cos C=\frac{ a^{2}+b^{2}-c^{2} }{2ab} ..........(SSS)

c^{2}=a^{2}+b^{2}-2ab\cos C..........(SAS)

若用两角及对边描述,可用正弦定理

\frac{a}{\sin A}=\frac{b}{\sin B}..........(AAS,但ASS可能出现0,1,2个解,由边角间具体关系决定。一般来说,解的个数

=\left\{\begin{matrix} 0, &a< b\sin A \\ 1, & a=b\sin A \\ 2, &b\sin A<a<b \\ 1,&a>b \end{matrix}\right.

若用三角及一边描述,则先列出其中两角的余弦定理,而后消元。

\cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc},

\cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}        联立得

\left\{\begin{matrix} (2b\cos A-2a\cos B)c &=2(b^{2}-a^{2}) \\ (2b\cos A+2a\cos B)c &=2c^{2} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} b\cos A-a\cos B= &b^{2}-a^{2} \\ b\cos A+a\cos B= & c \end{matrix}\right.

而  \frac{a}{\sin A}=\frac{b}{sin B}\Rightarrow a\sin B-b\sin A=0,

b\cos A-a\cos B=b^{2}-a^{2}\Rightarrow -a\sin A+b \cos B=sin(A-B)

\therefore \begin{pmatrix} -sinA & sin B\\ sinB & -sinA \end{pmatrix}\binom{a}{b}=\binom{\sin(A-B)}{0}                   解之可得a,b

代入c=b\cos A+a\cos B  可求得c.

\binom{a}{b}=\frac{\sin(A-B)}{\sin^{2} B-\sin^{2} C}\binom{\sin A}{\sin B}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值