[蓝桥杯][历届试题]回文数字
时间限制: 1Sec 内存限制: 128MB 提交: 2181 解决: 941
题目描述
观察数字:12321,123321 都有一个共同的特征,无论从左到右读还是从右向左读,都是相同的。这样的数字叫做:回文数字。
本题要求你找到一些5位或6位的十进制数字。满足如下要求:
该数字的各个数位之和等于输入的整数。
输入
一个正整数 n (10< n< 100), 表示要求满足的数位和。
输出
若干行,每行包含一个满足要求的5位或6位整数。
数字按从小到大的顺序排列。
如果没有满足条件的,输出:-1
样例输入
44
样例输出
99899
499994
589985
598895
679976
688886
697796
769967
778877
787787
796697
859958
868868
877778
886688
895598
949949
958859
967769
976679
985589
994499
解题思路
第一次做完复杂度很高,83%的错误。
看了大佬的解题思路,重新写了一下,简洁,一次AC
循环,每次去掉最后一位
每次%10,取得最后一个数,定义一个求值的sum,每次sum*10加上取余的最后一位
最后的sum就是i逆序的结果,注意:每次i应该/10,但是不能改变i值,所以每次循环开始的时候要先定义一个temp。用作计算sum。
完整代码
#include<iostream>
using namespace std;
int main()
{
int n;
cin>>n;
int flag=1;
for(int i=10000;i<999999;i++)
{
int num=0;
int sum=0;
int temp=i;
while(temp>0)
{
sum =sum+temp%10;
num = num * 10+ temp%10;
temp/=10;
}
if( sum == n && num==i)
{
flag=0;
cout<<i<<endl;
}
}
if(flag)
cout<<"-1";
return 0;
}