[蓝桥杯][2014年第五届真题]兰顿蚂蚁
时间限制: 1Sec 内存限制: 128MB 提交: 996 解决: 434
题目描述
兰顿蚂蚁,是于1986年,由克里斯·兰顿提出来的,属于细胞自动机的一种。
平面上的正方形格子被填上黑色或白色。在其中一格正方形内有一只“蚂蚁”。
蚂蚁的头部朝向为:上下左右其中一方。
蚂蚁的移动规则十分简单:
若蚂蚁在黑格,右转90度,将该格改为白格,并向前移一格;
若蚂蚁在白格,左转90度,将该格改为黑格,并向前移一格。
规则虽然简单,蚂蚁的行为却十分复杂。刚刚开始时留下的路线都会有接近对称,像是会重复,但不论起始状态如何,蚂蚁经过漫长的混乱活动后,会开辟出一条规则的“高速公路”。
蚂蚁的路线是很难事先预测的。
你的任务是根据初始状态,用计算机模拟兰顿蚂蚁在第n步行走后所处的位置。
输入
输入数据的第一行是 m n 两个整数(3 < m, n < 100),表示正方形格子的行数和列数。
接下来是 m 行数据。
每行数据为 n 个被空格分开的数字。0 表示白格,1 表示黑格。
接下来是一行数据:x y s k, 其中x y为整数,表示蚂蚁所在行号和列号(行号从上到下增长,列号从左到右增长,都是从0开始编号)。s 是一个大写字母,表示蚂蚁头的朝向,我们约定:上下左右分别用:UDLR表示。k 表示蚂蚁走的步数。
输出
输出数据为一个空格分开的整数 p q, 分别表示蚂蚁在k步后,所处格子的行号和列号。
样例输入
5 6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 3 L 5
样例输出
1 3
解题思路:
知道了蚂蚁怎么走,就很容易写出来过程,但是要注意的是,越界
我这里是把它的四个方向存储在数组里,那么就面临一个问题,当达到最后一个下标的方向时,怎么下一步到下标0;代码中一目了然。
+4)%4解决
但是,注意选择的时候还要用这个,除非你重新定一个变量存储每次的这个合法的方向值。
完整代码
#include<iostream>
using namespace std;
int fx_n(char FX,char fx[])
{
if(FX==fx[0]) return 0;
if(FX==fx[1]) return 1;
if(FX==fx[2]) return 2;
if(FX==fx[3]) return 3;
}
int main()
{
int hang,lie;
int nn[100][100];
cin>>hang>>lie;
for(int i=0;i<hang;i++)
for(int j=0;j<lie;j++)
cin>>nn[i][j];
char fx[4]={'U','R','D','L'};
int mx,my;
char FX;
int ans;
cin>>mx>>my>>FX>>ans;
for(int i=0;i<ans;i++)
{
if(nn[mx][my]==0)//白
{
int fxn= fx_n(FX,fx);//当前坐标下标
FX = fx[((fxn-1)+4)%4];//左转
nn[mx][my]=1;
switch(((fxn-1)+4)%4)
{
case 0:mx=mx-1;break;
case 1:my=my+1;break;
case 2:mx=mx+1;break;
case 3:my=my-1;break;
}
}
else if(nn[mx][my]==1)//黑
{
int fxn= fx_n(FX,fx);//当前坐标下标
FX = fx[((fxn+1)+4)%4];//右转
nn[mx][my]=0;
switch(((fxn+1)+4)%4)
{
case 0:mx=mx-1;break;
case 1:my=my+1;break;
case 2:mx=mx+1;break;
case 3:my=my-1;break;
}
}
}
cout<<mx<<" "<<my;
return 0;
}