题意:将一个无序的数列排列成有序的数列,问最少需要多少步可以完成
思路:赤裸裸的求逆序数嘛~~,还是最简单的那种,线段树轻松过之,可能姿势不好,时间蛮长的
之前有一道求逆序数的HDU的题目,那片文章已经介绍过原理,有兴趣的可以看看HDU1394
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn=500010;
const int inf=0x3f3f3f3f;
ll num[maxn*4];
int A1[maxn],A[maxn];
void update(int pos,int le,int ri,int node){
if(le==ri){
num[node]++;
return ;
}
int t=(le+ri)>>1;
if(pos<=t) update(pos,le,t,node<<1);
else update(pos,t+1,ri,node<<1|1);
num[node]=num[node<<1]+num[node<<1|1];
}
ll query(int l,int r,int le,int ri,int node){
if(l<=le&&ri<=r){
return num[node];
}
int t=(le+ri)>>1;
ll ans=0;
if(l<=t) ans+=query(l,r,le,t,node<<1);
if(r>t) ans+=query(l,r,t+1,ri,node<<1|1);
return ans;
}
int main(){
int n;
while(scanf("%d",&n)!=-1){
if(n==0) break;
memset(num,0,sizeof(num));
for(int i=1;i<=n;i++){
scanf("%d",&A1[i]);
A[i]=A1[i];
}
sort(A+1,A+1+n);
ll ans=0;
for(int i=1;i<=n;i++){
int t=lower_bound(A+1,A+1+n,A1[i])-A;
// cout<<"adad"<<t<<endl;
ans+=query(t,n,1,n,1);
update(t,1,n,1);
}
printf("%lld\n",ans);
}
return 0;
}