题意:给一个无向图,可能是不连通的,问删除两个点之后联通块最多的数量,两个点随意
思路:之前写过一个删除一个点的剩余联通块的题目,和这个差不多嘛,但是要注意细节,WA了10多次,对于一个5000个点和5000条边的图来说,我们可以先去枚举删除一个点,然后剩下的操作就和删除一个点的相同了我们找到最大的cnt,cnt记录的是这个点删除后的联通块个数-1;具体细节看代码把,注意这种情况,一组数据
3 3
0 1
0 2
0 3
输出2,我之前写的一直输出3,处理了一下才过掉
#include <vector>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int maxn=5010;
vector<int>G[maxn];
int E[maxn],L[maxn],vis[maxn],cnt[maxn];
int k,kk;
void dfs(int x,int fa,int xx){
k++;E[x]=k;L[x]=k;vis[x]=1;
for(unsigned int i=0;i<G[x].size();i++){
int t=G[x][i];
if(t==fa) continue;
if(!vis[t]){
dfs(t,fa,xx);
L[x]=min(L[x],L[t]);
if(L[t]>=E[x]&&x!=xx) cnt[x]++;
else if(x==xx) kk++;
}else L[x]=min(L[x],E[t]);
}
}
int slove(int n){
int ans=0;
for(int i=1;i<=n;i++){
int sum=0,max1=-inf;
memset(vis,0,sizeof(vis));
memset(cnt,0,sizeof(cnt));
for(int j=1;j<=n;j++){
if(!vis[j]&&i!=j){
sum++;k=0;kk=0;
dfs(j,i,j);
if(kk>=2) cnt[j]=kk-1;
else cnt[j]=-1;
}
}
for(int j=1;j<=n;j++){
if(i!=j){
if(cnt[j]>max1) max1=cnt[j];
}
}
ans=max(ans,sum+max1);
}
return ans;
}
int main(){
int n,a,b,m;
while(scanf("%d%d",&n,&m)!=EOF){
for(int i=0;i<maxn;i++) G[i].clear();
for(int i=0;i<m;i++){
scanf("%d%d",&a,&b);
a++;b++;
G[a].push_back(b);
G[b].push_back(a);
}
int ans=slove(n);
printf("%d\n",ans);
}
return 0;
}