HDU 3599 最短路+最大流

141 篇文章 0 订阅
34 篇文章 0 订阅

点击打开链接

题意:给n个地点及许多边,现在问你要用最短时间内有多少种不相交的最短路

思路:因为要的是最短路上的边,所以先跑最短路将满足的边全部拿出来建网络流的图,然后在跑个最大流就行了因为一条边只能用一次,所以网络流就行

#include <queue>
#include <vector>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int maxn=3010;
struct edge{
    int to,cap,rev;
    edge(){}
    edge(int a,int b,int c){to=a;cap=b;rev=c;}
};
vector<edge> G[maxn];
int level[maxn],iter[maxn];
void add_edge(int from,int to,int cap){
    G[from].push_back(edge(to,cap,G[to].size()));
    G[to].push_back(edge(from,0,G[from].size()-1));
}
void bfs(int s){
    memset(level,-1,sizeof(level));
    queue<int>que;
    level[s]=0;que.push(s);
    while(!que.empty()){
        int v=que.front();que.pop();
        for(unsigned int i=0;i<G[v].size();i++){
            edge &e=G[v][i];
            if(e.cap>0&&level[e.to]<0){
                level[e.to]=level[v]+1;
                que.push(e.to);
            }
        }
    }
}
int dfs(int v,int t,int f){
    if(v==t) return f;
    for(int &i=iter[v];i<G[v].size();i++){
        edge &e=G[v][i];
        if(e.cap>0&&level[v]<level[e.to]){
            int d=dfs(e.to,t,min(f,e.cap));
            if(d>0){
                e.cap-=d;
                G[e.to][e.rev].cap+=d;
                return d;
            }
        }
    }
    return 0;
}
int max_flow(int s,int t){
    int flow=0;
    while(1){
        bfs(s);
        if(level[t]<0) return flow;
        memset(iter,0,sizeof(iter));
        int f;
        while((f=dfs(s,t,inf))>0) flow+=f;
    }
}
struct edge1{
    int to,cost;
    edge1(int a,int b){to=a;cost=b;}
};
typedef pair<int,int>P;
vector<edge1>G1[maxn];
int dis[maxn];
void dijkstra(int s){
    priority_queue<P,vector<P>,greater<P> >que;
    fill(dis,dis+maxn,inf);
    dis[s]=0;que.push(P(0,s));
    while(!que.empty()){
        P p=que.top();que.pop();
        int v=p.second;
        if(dis[v]<p.first) continue;
        for(unsigned int i=0;i<G1[v].size();i++){
            edge1 e=G1[v][i];
            if(dis[e.to]>dis[v]+e.cost){
                dis[e.to]=dis[v]+e.cost;
                que.push(P(dis[e.to],e.to));
            }
        }
    }
}
int A[1000010],B[1000010],C[1000010];
int main(){
    int T,n;
    scanf("%d",&T);
    while(T--){
        scanf("%d",&n);
        for(int i=0;i<maxn;i++) G[i].clear();
        for(int i=0;i<maxn;i++) G1[i].clear();
        add_edge(0,1,inf);
        add_edge(n,n+1,inf);
        int k=0;
        while(1){
            scanf("%d%d%d",&A[k],&B[k],&C[k]);
            if(A[k]==0&&B[k]==0&&C[k]==0) break;
            G1[A[k]].push_back(edge1(B[k],C[k]));
            G1[B[k]].push_back(edge1(A[k],C[k]));
            k++;
        }
        dijkstra(1);
        if(n==1||dis[n]==inf){
            printf("0\n");continue;
        }
        for(int i=0;i<maxn;i++) G1[i].clear();
        for(int i=0;i<k;i++){
            if(dis[A[i]]>dis[B[i]]) swap(A[i],B[i]);
            if(dis[B[i]]-dis[A[i]]==C[i]){
                add_edge(A[i],B[i],1);
            }
        }
        int ans=max_flow(0,n+1);
        printf("%d\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值