线性表的定义和基本操作
定义
线性表的定义:具有相同数据类型的
n
n
n(
n
>
=
0
n>=0
n>=0)个数据元素的有限序列,其中
n
n
n为表长,当
n
=
0
n=0
n=0时线性表是一个空表。若用L命名线性表,则其一般表示为
L
=
(
a
1
,
a
2
,
.
.
.
,
a
i
,
a
i
+
1
,
.
.
.
,
a
n
)
L=(a_1,a_2,...,a_i,a_{i+1},...,a_n)
L=(a1,a2,...,ai,ai+1,...,an)
其中:
a
i
a_i
ai——线性表中的“第
i
i
i个”元素在线性表中的位序;
a
1
a_1
a1——表头元素;
a
n
a_n
an——表尾元素;
除第一个元素外,每个元素有且仅有一个直接前驱;除最后一个元素外,每个元素有且只有一个后继。
基本操作
- InitList(&L): 初始化表。构造一个空的线性表L,分配内存空间。
- DestroyList(&L): 销毁操作。销毁线性表,并释放线性表L所占用的内存空间。
- ListInsert(&L,i,e): 插入操作。在表L的第i个位置上插入指定元素e。
- ListDelete(&L,i,e): 删除操作。删除表L中第i个位置的元素,并用e返回删除元素的值。
- LocateElem(L,e): 按值查找操作。在表L中查找具有给定关键字值的元素。
- GetElem(L,i): 按位查找操作。获取表L中第i个位置的元素的值。
- Length(L): 求表长。返回线性表L的长度,即L中数据元素的个数。
- PrintList(L): 输出操作。按前后顺序输出线性表L的所有元素值。
- Empty(L): 判空操作。若L为空表,则返回true;否则返回false。
Tips
- 对数据的操作——创销增删改查
- C语言函数的定义——<返回值类型> 函数名 (<参数1类型>参数1,<参数2类型>参数2,…)
- 实际开发中,可根据实际需求定义其他的基本操作
- 函数名和参数的形式、命名都可改变,命名要有可读性。
- 什么时候要传入引用“&”——对参数的修改结果需要“带回来”
顺序表(顺序存储)
定义
用顺序存储的方式实现线性表。
顺序存储:把逻辑相邻的元素存储在物理位置上也相邻的存储单元中,元素之间的关系由存储单元的邻接关系来体现。
实现
#include <stdio.h>
#define MaxSize 10 //定义最大长度
typedef struct{
ElemType data[MaxSize]; //用静态的数组存放数据元素
int length; //顺序表的当前长度
}SqList; //顺序表的类型定义(静态分配方式)
void InitList(SqList &L){
for(int i = 0;i < MaxSize;i++)
L.data[i]=0; //将所有数据元素设置为默认初始值
L.length = 0; //顺序表初始长度为0
}
int main(void){
SqList L; //声明一个顺序表
InitList(L); //初始化顺序表
//后续操作
return 0;
}
顺序表的实现——动态分配
动态申请和释放内存空间
C——malloc、free函数
L.data = (ElemType *) malloc(sizeof(ElemType) *InitSize)
C++——new、delete 关键字
#define InitSize 10 //顺序表的初始长度
typedef struct{
ElemType *data; //指示动态分配数组的指针
int MaxSize; //顺序表的最大容量
int length; //顺序表的当前长度
}SeqList; //顺序表的类型定义(动态分配方式)
void InitList(SeqList &L){
//用malloc函数申请一片连续的存储空间
L.data = (int *)malloc(InitSize*sizeof(int));
L.length = 0;
L.MaxSize = InitSize;
int main(void){
SqeList L;
InitList(L);
IncreaseSize(L,5);
return 0;
}
特点
- 随机访问,即可以在 O ( 1 ) O(1) O(1)时间内找到第 i i i个元素
- 存储密度高,每个节点只存储数据元素
- 拓展容量不方便(即便采用动态分配的方式来实现,拓展长度的时间复杂度也较高)
- 插入、删除操作不方便,需要移动大量元素
插入和删除操作
ListInsert(&L,i,e):插入操作。在表L中的第i个位置上插入指定元素e。
#define MaxSize 10
typedef struct{
int data[MaxSize];
int length;
}sqLsit;
bool ListInsert(SqList &L,int i,int e){
if (i<1 || i>L.length+1)
reutrn false;
for(int j=L.length;j>=i;j--)
L.data[j]=L.data[j-1];
L.data[i-1]=e;
L.length++;
return true;
}
int main(void){
SqList L;
InitList(L);
ListInsert(L,3,3);
return 0;
}
时间复杂度计算:
最好情况:新元素插入到表尾,不需移动元素
最坏情况:新元素插入到表头,需要将原有的n个元素全都向后移动
平均情况:假设新元素插入到任何一个位置的概率相同,即
i
=
1
,
2
,
3
,
l
e
n
g
t
h
+
1
i=1,2,3,length+1
i=1,2,3,length+1的概率是
p
=
1
n
+
1
p=\frac{1}{n+1}
p=n+11
i
=
1
i=1
i=1,循环
n
n
n次;
i
=
2
i=2
i=2,循环
n
−
1
n-1
n−1次;i=3,循环
n
−
2
n-2
n−2次
.
.
.
...
...
i
=
n
+
1
i=n+1
i=n+1时,循环0次。
平均循环次数 =
n
p
+
(
n
−
1
)
p
+
⋯
+
1
p
=
n
(
n
+
1
)
2
1
n
+
1
=
n
2
np+(n-1)p+\dots+1 p=\frac{n(n+1)}{2}\frac{1}{n+1}=\frac{n}{2}
np+(n−1)p+⋯+1p=2n(n+1)n+11=2n
ListDelete(&L,i&e):删除操作。删除表L中第i个位置的元素,并用e返回删除元素的值。
bool ListDelete(SqList &L,int i,int &e){
if (i<1 || i>L.length)
return false;
e = L.data[i-1];
for(int j=i;j<L.length;j++)
L.data[j-1]=L.data[j];
L.length--;
return true;
}
int main(void){
SqList L;
InitList(L);
int e = -1;
if (ListDelete(L,3,e))
printf("已删除第3个元素,删除元素值为=%d",e);
else
printf("位序i不合法,删除失败\n");
return 0;
}
最好情况:删除表尾元素,不需移动其他元素。
最坏情况:删除表头元素,需将后续的n-1个元素全都向前移动
平均情况:假设删除任何一个元素的概率相同,即
i
=
1
,
2
,
3
,
…
,
l
e
n
g
t
h
i=1,2,3,\dots,length
i=1,2,3,…,length的概率都是
p
=
1
n
p=\frac{1}{n}
p=n1
i
=
1
i=1
i=1,循环
n
−
1
n-1
n−1次;
i
=
2
i=2
i=2时,循环
n
−
2
n-2
n−2次;
i
=
3
i=3
i=3,循环
n
−
3
n-3
n−3次
…
\dots
…
i
=
n
i=n
i=n时,循环0次
平均循环次数=
(
n
−
1
)
p
+
(
n
−
2
)
p
+
⋯
+
1
p
=
n
(
n
−
1
)
2
1
n
=
n
−
1
2
(n-1)p+(n-2)p+\dots+1p=\frac{n(n-1)}{2}\frac{1}{n}=\frac{n-1}{2}
(n−1)p+(n−2)p+⋯+1p=2n(n−1)n1=2n−1
查找操作
GetElem(L,i):按位查找操作。获取表L中第i个位置的元素的值。
#define InitSize 10
typedef struct{
ElemType *data;
int MaxSize;
int length;
}SeqList;
ElemType GetElem(SeqList L,int i){
if(i>=0 && i<MaxSize)
return L.data[i-1];
else
return 0;
}
时间复杂度 O ( 1 ) O(1) O(1)
LocalElem(L,e):按值查找操作。在表L中查找具有给定关键字值的元素。
#define InitSize 10
typedef struct{
ElemType *data;
int MaxSize;
int length;
}SeqList;
int LocateElem(SeqList L,ElemType e){
for(int i=0;i<L.length;i++)
if(L.data[i]==e)
return i+1;
return 0;
}
最好情况:目标元素在表头。最好时间复杂度O(1)
最坏情况:目标元素在表尾。最坏时间复杂度O(n)
平均情况:假设目标元素出现在任何一个位置的概率相同,都是
1
n
\frac{1}{n}
n1
平均循环次数=
1
×
1
n
+
2
×
1
n
+
⋯
+
n
×
1
n
=
n
(
n
+
1
)
2
×
1
n
=
n
+
1
2
1\times\frac{1}{n}+2\times\frac{1}{n}+\dots+n\times\frac{1}{n}=\frac{n(n+1)}{2}\times\frac{1}{n}=\frac{n+1}{2}
1×n1+2×n1+⋯+n×n1=2n(n+1)×n1=2n+1