数据结构学习笔记(二) | 1 线性表 之 顺序表

线性表的定义和基本操作

定义

线性表的定义:具有相同数据类型的 n n n( n > = 0 n>=0 n>=0)个数据元素的有限序列,其中 n n n为表长,当 n = 0 n=0 n=0时线性表是一个空表。若用L命名线性表,则其一般表示为
L = ( a 1 , a 2 , . . . , a i , a i + 1 , . . . , a n ) L=(a_1,a_2,...,a_i,a_{i+1},...,a_n) L=(a1,a2,...,ai,ai+1,...,an)
其中:
a i a_i ai——线性表中的“第 i i i个”元素在线性表中的位序;
a 1 a_1 a1——表头元素;
a n a_n an——表尾元素;
除第一个元素外,每个元素有且仅有一个直接前驱;除最后一个元素外,每个元素有且只有一个后继。

基本操作

  • InitList(&L): 初始化表。构造一个空的线性表L,分配内存空间。
  • DestroyList(&L): 销毁操作。销毁线性表,并释放线性表L所占用的内存空间。
  • ListInsert(&L,i,e): 插入操作。在表L的第i个位置上插入指定元素e。
  • ListDelete(&L,i,e): 删除操作。删除表L中第i个位置的元素,并用e返回删除元素的值。
  • LocateElem(L,e): 按值查找操作。在表L中查找具有给定关键字值的元素。
  • GetElem(L,i): 按位查找操作。获取表L中第i个位置的元素的值。
  • Length(L): 求表长。返回线性表L的长度,即L中数据元素的个数。
  • PrintList(L): 输出操作。按前后顺序输出线性表L的所有元素值。
  • Empty(L): 判空操作。若L为空表,则返回true;否则返回false。

Tips

  1. 对数据的操作——创销增删改查
  2. C语言函数的定义——<返回值类型> 函数名 (<参数1类型>参数1,<参数2类型>参数2,…)
  3. 实际开发中,可根据实际需求定义其他的基本操作
  4. 函数名和参数的形式、命名都可改变,命名要有可读性。
  5. 什么时候要传入引用“&”——对参数的修改结果需要“带回来”

顺序表(顺序存储)

定义

用顺序存储的方式实现线性表。
顺序存储:把逻辑相邻的元素存储在物理位置上也相邻的存储单元中,元素之间的关系由存储单元的邻接关系来体现。

实现

#include <stdio.h>
#define MaxSize 10				//定义最大长度
typedef struct{					
	ElemType data[MaxSize];		//用静态的数组存放数据元素
	int length;					//顺序表的当前长度
}SqList;						//顺序表的类型定义(静态分配方式)

void InitList(SqList &L){
	for(int i = 0;i < MaxSize;i++)
			L.data[i]=0;			//将所有数据元素设置为默认初始值
	L.length = 0;					//顺序表初始长度为0
}		

int main(void){
	SqList L;						//声明一个顺序表
	InitList(L);					//初始化顺序表
	//后续操作
	return 0;
}

顺序表的实现——动态分配

动态申请和释放内存空间
C——malloc、free函数
L.data = (ElemType *) malloc(sizeof(ElemType) *InitSize)
C++——new、delete 关键字

#define InitSize 10				//顺序表的初始长度
typedef struct{
	ElemType *data;				//指示动态分配数组的指针
	int MaxSize;				//顺序表的最大容量
	int length;					//顺序表的当前长度
}SeqList;						//顺序表的类型定义(动态分配方式)

void InitList(SeqList &L){
//用malloc函数申请一片连续的存储空间
L.data = (int *)malloc(InitSize*sizeof(int));
L.length = 0;
L.MaxSize = InitSize;

int main(void){
	SqeList L;
	InitList(L);
	IncreaseSize(L,5);
	return 0;
}

特点

  • 随机访问,即可以在 O ( 1 ) O(1) O(1)时间内找到第 i i i个元素
  • 存储密度高,每个节点只存储数据元素
  • 拓展容量不方便(即便采用动态分配的方式来实现,拓展长度的时间复杂度也较高)
  • 插入、删除操作不方便,需要移动大量元素

插入和删除操作

ListInsert(&L,i,e):插入操作。在表L中的第i个位置上插入指定元素e。

#define MaxSize 10
typedef struct{
	int data[MaxSize];
	int length;
}sqLsit;

bool ListInsert(SqList &L,int i,int e){
	if (i<1 || i>L.length+1)
	reutrn false;
	for(int j=L.length;j>=i;j--)
		L.data[j]=L.data[j-1];
	L.data[i-1]=e;
	L.length++;
	return true;
}

int main(void){
	SqList L;
	InitList(L);
	ListInsert(L,3,3);
	return 0;
}

时间复杂度计算:
最好情况:新元素插入到表尾,不需移动元素
最坏情况:新元素插入到表头,需要将原有的n个元素全都向后移动
平均情况:假设新元素插入到任何一个位置的概率相同,即 i = 1 , 2 , 3 , l e n g t h + 1 i=1,2,3,length+1 i=1,2,3,length+1的概率是 p = 1 n + 1 p=\frac{1}{n+1} p=n+11
i = 1 i=1 i=1,循环 n n n次; i = 2 i=2 i=2,循环 n − 1 n-1 n1次;i=3,循环 n − 2 n-2 n2 . . . ... ... i = n + 1 i=n+1 i=n+1时,循环0次。

平均循环次数 =
n p + ( n − 1 ) p + ⋯ + 1 p = n ( n + 1 ) 2 1 n + 1 = n 2 np+(n-1)p+\dots+1 p=\frac{n(n+1)}{2}\frac{1}{n+1}=\frac{n}{2} np+(n1)p++1p=2n(n+1)n+11=2n

ListDelete(&L,i&e):删除操作。删除表L中第i个位置的元素,并用e返回删除元素的值。

bool ListDelete(SqList &L,int i,int &e){
	if (i<1 || i>L.length)
		return false;
	e = L.data[i-1];
	for(int j=i;j<L.length;j++)
		L.data[j-1]=L.data[j];
	L.length--;
	return true;
}

int main(void){
	SqList L;
	InitList(L);
	int e = -1;
	if (ListDelete(L,3,e))
		printf("已删除第3个元素,删除元素值为=%d",e);
	else 
		printf("位序i不合法,删除失败\n");
	return 0;
}

最好情况:删除表尾元素,不需移动其他元素。
最坏情况:删除表头元素,需将后续的n-1个元素全都向前移动
平均情况:假设删除任何一个元素的概率相同,即 i = 1 , 2 , 3 , … , l e n g t h i=1,2,3,\dots,length i=1,2,3,,length的概率都是 p = 1 n p=\frac{1}{n} p=n1
i = 1 i=1 i=1,循环 n − 1 n-1 n1次; i = 2 i=2 i=2时,循环 n − 2 n-2 n2次; i = 3 i=3 i=3,循环 n − 3 n-3 n3 … \dots i = n i=n i=n时,循环0次
平均循环次数=
( n − 1 ) p + ( n − 2 ) p + ⋯ + 1 p = n ( n − 1 ) 2 1 n = n − 1 2 (n-1)p+(n-2)p+\dots+1p=\frac{n(n-1)}{2}\frac{1}{n}=\frac{n-1}{2} (n1)p+(n2)p++1p=2n(n1)n1=2n1

查找操作

GetElem(L,i):按位查找操作。获取表L中第i个位置的元素的值。

#define InitSize 10
typedef struct{
	ElemType *data;
	int MaxSize;
	int length;
}SeqList;

ElemType GetElem(SeqList L,int i){
	if(i>=0 && i<MaxSize)
		return L.data[i-1];
	else
		return 0;
}

时间复杂度 O ( 1 ) O(1) O(1)

LocalElem(L,e):按值查找操作。在表L中查找具有给定关键字值的元素。

#define InitSize 10
typedef struct{
	ElemType *data;
	int MaxSize;
	int length;
}SeqList;

int LocateElem(SeqList L,ElemType e){
	for(int i=0;i<L.length;i++)
		if(L.data[i]==e)
			return i+1;
		return 0;
}

最好情况:目标元素在表头。最好时间复杂度O(1)
最坏情况:目标元素在表尾。最坏时间复杂度O(n)
平均情况:假设目标元素出现在任何一个位置的概率相同,都是 1 n \frac{1}{n} n1
平均循环次数=
1 × 1 n + 2 × 1 n + ⋯ + n × 1 n = n ( n + 1 ) 2 × 1 n = n + 1 2 1\times\frac{1}{n}+2\times\frac{1}{n}+\dots+n\times\frac{1}{n}=\frac{n(n+1)}{2}\times\frac{1}{n}=\frac{n+1}{2} 1×n1+2×n1++n×n1=2n(n+1)×n1=2n+1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值