1 生成子空间的定义
给定数域 P P P上的线性空间 V V V中的一组向量 α 1 , ⋯   , α r \alpha_1,\cdots,\alpha_r α1,⋯,αr,我们希望得到一个 V V V的子空间 W W W,使得 W W W中包含向量 α 1 , ⋯   , α r \alpha_1,\cdots,\alpha_r α1,⋯,αr, 那么 W W W应该是怎样的呢?
由线性空间对数乘运算的封闭性,我们知道,下面的这些向量应该在 W W W中: k i α i , i = 1 , 2 , ⋯   , r . k_i\alpha_i, i=1,2,\cdots, r. kiαi,i=1,2,⋯,r.
又由于线性空间对加法封闭,所以 k 1 α 1 + k 2 α 2 + ⋯ + k r α r k_1\alpha_1+k_2\alpha_2+\cdots+k_r\alpha_r k1α1+k2α2+⋯+krαr也在 W W W中.
于是我们得到下面的集合:
W = { k 1 α 1 + k 2 α 2 + ⋯ + k r α r ∣ α i ∈ V , k i ∈ P } . W=\{k_1\alpha_1+k_2\alpha_2+\cdots+k_r\alpha_r|\alpha_i\in V,k_i\in P\}. W={k1α1+k2α2+⋯+krαr∣αi∈V,ki∈P}.
可以证明, W W W对加法和数乘封闭:
∀ α , β ∈ W , ∀ λ ∈ P , \forall \alpha,\beta \in W, \forall \lambda\in P, ∀α,β∈W,∀λ∈P, 不妨设,
α = ∑ i = 1 r k i α i , β = ∑ i = 1 r l i α i , \alpha=\sum_{i=1}^{r}k_i\alpha_i, \beta=\sum_{i=1}^{r}l_i\alpha_i, α=i=1∑rkiαi,β=i=1∑rliαi,
因为,
α
+
β
=
α
=
∑
i
=
1
r
(
k
i
+
l
i
)
α
i
∈
W
,
\alpha+\beta=\alpha=\sum_{i=1}^{r}(k_i+l_i)\alpha_i\in W,
α+β=α=i=1∑r(ki+li)αi∈W,
λ
α
=
α
=
∑
i
=
1
r
λ
k
i
α
i
∈
W
,
\lambda\alpha=\alpha=\sum_{i=1}^{r}\lambda k_i\alpha_i\in W,
λα=α=i=1∑rλkiαi∈W,
所以, W W W对加法和数乘封闭,从而是满足条件的 V V V的子空间。
定义 给定数域 P P P上的线性空间 V V V中的一组向量 α 1 , ⋯   , α r \alpha_1,\cdots,\alpha_r α1,⋯,αr,由这组向量的一切可能的线性组合构成的集合 W W W是 V V V的子空间,称之为由向量 α 1 , ⋯   , α r \alpha_1,\cdots,\alpha_r α1,⋯,αr生成的子空间,记为 L ( α 1 , ⋯   , α r ) L(\alpha_1,\cdots,\alpha_r) L(α1,⋯,αr)。 α 1 , ⋯   , α r \alpha_1,\cdots,\alpha_r α1,⋯,αr称为 W = L ( α 1 , ⋯   , α r ) W=L(\alpha_1,\cdots,\alpha_r) W=L(α1,⋯,αr)的一组生成元。
2 生成子空间的交空间
例 1 在 R 3 R^3 R3中,设 i , j , k i,j,k i,j,k为直角坐标系 o x y z oxyz oxyz中三个坐标轴上的单位向量。令 V 1 = L ( i , j ) , V 2 = L ( j , k ) V_1=L(i,j), V_2=L(j,k) V1=L(i,j),V2=L(j,k), 则 V 1 ∩ V 2 = L ( j ) . V_1\cap V_2=L(j). V1∩V2=L(j).
直观解释: V 1 V_1 V1是 x o y xoy xoy平面, V 2 V_2 V2是 y o z yoz yoz平面, 而 V 1 ∩ V 2 = L ( j ) V_1\cap V_2=L(j) V1∩V2=L(j)是 y y y轴。
例 2 已知在4元有序数组空间
P
4
P^4
P4中,
α
1
=
(
1
,
2
,
1
,
0
)
T
,
α
2
=
(
−
1
,
1
,
1
,
1
)
T
,
\alpha_1=(1,2,1,0)^T, \alpha_2=(-1,1,1,1)^T,
α1=(1,2,1,0)T,α2=(−1,1,1,1)T,
β 1 = ( 2 , − 1 , 0 , 1 ) T , β 2 = ( 1 , − 1 , 3 , 7 ) T , \beta_1=(2,-1,0,1)^T,\beta_2=(1,-1,3,7)^T, β1=(2,−1,0,1)T,β2=(1,−1,3,7)T,
求 L ( α 1 , α 2 ) ∩ L ( β 1 , β 2 ) L(\alpha_1,\alpha_2)\cap L(\beta_1,\beta_2) L(α1,α2)∩L(β1,β2)的基和维数。
分析: 找出交空间中的任意一个向量的表达式,可以看出它是有哪些向量生成的,就可以找到交空间的一组基。
解: 设 ∀ α ∈ L ( α 1 , α 2 ) ∩ L ( β 1 , β 2 ) , \forall \alpha \in L(\alpha_1,\alpha_2)\cap L(\beta_1,\beta_2), ∀α∈L(α1,α2)∩L(β1,β2),那么,
α = x 1 α 1 + x 2 α 2 = x 3 β 1 + x 4 β 2 , \alpha=x_1\alpha_1+x_2\alpha_2=x_3\beta_1+x_4\beta_2, α=x1α1+x2α2=x3β1+x4β2,
从而,
x 1 α 1 + x 2 α 2 − x 3 β 1 − x 4 β 2 = 0 , x_1\alpha_1+x_2\alpha_2-x_3\beta_1-x_4\beta_2=0, x1α1+x2α2−x3β1−x4β2=0,
为了解岀这个方程组,令其系数矩阵为,
A = ( α 1 , α 2 , − β 1 , − β 2 ) A=\begin{pmatrix}\alpha_1,\alpha_2,-\beta_1,-\beta_2\end{pmatrix} A=(α1,α2,−β1,−β2)
A = ( 1 − 1 − 2 − 1 2 1 1 1 1 1 0 − 3 0 1 − 1 − 7 ) → ( 1 0 0 1 0 1 0 − 4 0 0 1 3 0 0 0 0 ) , A=\begin{pmatrix}1&-1&-2&-1\\2&1&1&1\\1&1&0&-3\\0&1&-1&-7\end{pmatrix}\rightarrow\begin{pmatrix}1&0&0&1\\0&1&0&-4\\0&0&1&3\\0&0&0&0\end{pmatrix}, A=⎝⎜⎜⎛1210−1111−210−1−11−3−7⎠⎟⎟⎞→⎝⎜⎜⎛1000010000101−430⎠⎟⎟⎞,
所以,
( x 1 x 2 x 3 x 4 ) = t ( − 1 4 − 3 1 ) , t ∈ P . \begin{pmatrix}x_1\\x_2\\x_3\\x_4\end{pmatrix}=t\begin{pmatrix}-1\\4\\-3\\1\end{pmatrix},t\in P. ⎝⎜⎜⎛x1x2x3x4⎠⎟⎟⎞=t⎝⎜⎜⎛−14−31⎠⎟⎟⎞,t∈P.
将 x 1 = − t , x 2 = 4 t x_1=-t,x_2=4t x1=−t,x2=4t代入表达式 α = x 1 α 1 + x 2 α 2 , \alpha=x_1\alpha_1+x_2\alpha_2, α=x1α1+x2α2,得
α = t ( − α 1 + 4 α 2 ) = t ( − 5 2 3 4 ) , \alpha=t(-\alpha_1+4\alpha_2)=t\begin{pmatrix}-5\\2\\3\\4\end{pmatrix}, α=t(−α1+4α2)=t⎝⎜⎜⎛−5234⎠⎟⎟⎞,
η = ( − 5 2 3 4 ) \eta=\begin{pmatrix}-5\\2\\3\\4\end{pmatrix} η=⎝⎜⎜⎛−5234⎠⎟⎟⎞
由于 α \alpha α是交空间中的任意向量,它被表示成了一个向量 η \eta η的线性组合,于是 η \eta η 就是交空间 L ( α 1 , α 2 ) ∩ L ( β 1 , β 2 ) L(\alpha_1,\alpha_2)\cap L(\beta_1,\beta_2) L(α1,α2)∩L(β1,β2)的基,维数等于1。
注: 事实上, L ( α 1 , α 2 ) ∩ L ( β 1 , β 2 ) = L ( η ) . L(\alpha_1,\alpha_2)\cap L(\beta_1,\beta_2)=L(\eta). L(α1,α2)∩L(β1,β2)=L(η).
3 生成子空间的和空间
例 3 已知在4元有序数组空间
P
4
P^4
P4中,
α
1
=
(
1
,
2
,
1
,
0
)
T
,
α
2
=
(
−
1
,
1
,
1
,
1
)
T
,
\alpha_1=(1,2,1,0)^T, \alpha_2=(-1,1,1,1)^T,
α1=(1,2,1,0)T,α2=(−1,1,1,1)T,
β 1 = ( 2 , − 1 , 0 , 1 ) T , β 2 = ( 1 , − 1 , 3 , 7 ) T , \beta_1=(2,-1,0,1)^T,\beta_2=(1,-1,3,7)^T, β1=(2,−1,0,1)T,β2=(1,−1,3,7)T,
求和空间 L ( α 1 , α 2 ) + L ( β 1 , β 2 ) L(\alpha_1,\alpha_2)+ L(\beta_1,\beta_2) L(α1,α2)+L(β1,β2)的基和维数。
分析: 由和空间的公式: L ( α 1 , α 2 ) + L ( β 1 , β 2 ) = L ( α 1 , α 2 , β 1 , β 2 ) , L(\alpha_1,\alpha_2)+L(\beta_1,\beta_2)=L(\alpha_1,\alpha_2,\beta_1,\beta_2), L(α1,α2)+L(β1,β2)=L(α1,α2,β1,β2), 所以和空间 L ( α 1 , α 2 ) + L ( β 1 , β 2 ) L(\alpha_1,\alpha_2)+ L(\beta_1,\beta_2) L(α1,α2)+L(β1,β2)的基和维数就可以转化为求 L ( α 1 , α 2 , β 1 , β 2 ) L(\alpha_1,\alpha_2,\beta_1,\beta_2) L(α1,α2,β1,β2)的一组基和维数。
解: 因为 L ( α 1 , α 2 ) + L ( β 1 , β 2 ) = L ( α 1 , α 2 , β 1 , β 2 ) , L(\alpha_1,\alpha_2)+L(\beta_1,\beta_2)=L(\alpha_1,\alpha_2,\beta_1,\beta_2), L(α1,α2)+L(β1,β2)=L(α1,α2,β1,β2), 为了求 L ( α 1 , α 2 , β 1 , β 2 ) L(\alpha_1,\alpha_2,\beta_1,\beta_2) L(α1,α2,β1,β2)的一组基,令
A = ( α 1 , α 2 , β 1 , β 2 ) , A=\begin{pmatrix}\alpha_1,\alpha_2,\beta_1,\beta_2\end{pmatrix}, A=(α1,α2,β1,β2),
A = ( 1 − 1 2 1 2 1 − 1 − 1 1 1 0 3 0 1 1 7 ) → ( 1 − 1 2 1 0 1 1 7 0 0 1 3 0 0 0 0 ) , A=\begin{pmatrix}1&-1&2&1\\2&1&-1&-1\\1&1&0&3\\0&1&1&7\end{pmatrix}\rightarrow\begin{pmatrix}1&-1&2&1\\0&1&1&7\\0&0&1&3\\0&0&0&0\end{pmatrix}, A=⎝⎜⎜⎛1210−11112−1011−137⎠⎟⎟⎞→⎝⎜⎜⎛1000−110021101730⎠⎟⎟⎞,
所以, r ( A ) = 3 r(A)=3 r(A)=3, A A A的极大无关组为 α 1 , α 2 , β 1 \alpha_1,\alpha_2,\beta_1 α1,α2,β1,即
和空间 L ( α 1 , α 2 ) + L ( β 1 , β 2 ) L(\alpha_1,\alpha_2)+ L(\beta_1,\beta_2) L(α1,α2)+L(β1,β2)的一组基为 α 1 , α 2 , β 1 \alpha_1,\alpha_2,\beta_1 α1,α2,β1,维数为3。
更多内容,欢迎用微信扫描下图中的二维码,或搜索“大哉数学之为用”,免费关注微信公众号“大哉数学之为用”进行阅读。