与矩阵有关的四种子线性空间

符号: P P P——数域;
P m × n P^{m\times n} Pm×n—— m × n m\times n m×n矩阵的集合;
P n P^n Pn—— n n n元有序数组空间;
r ( A ) r(A) r(A)—— A A A的秩.

一、 预备知识

设矩阵 A ∈ P m × n A\in P^{m\times n} APm×n, 矩阵 A A A的秩为 r ( A ) = r . r(A)=r. r(A)=r. x ∈ P n , x = ( x 1 , x 2 , ⋯   , x n ) T x\in P^n,x=(x_1,x_2,\cdots,x_n)^T xPn,x=(x1,x2,,xn)T n n n维列

向量. y ∈ P m , y = ( y 1 , y 2 , ⋯   , y m ) T y\in P^m, y=(y_1,y_2,\cdots,y_m)^T yPm,y=(y1,y2,,ym)T m m m维列向量.

1. 矩阵 A A A的列向量组的线性组合的代数表示

将矩阵 A A A按列分块,设其第 i i i列为 α i \alpha_i αi, 则 α i ∈ P m , \alpha_i\in P^m, αiPm, 换句话说, α 1 , α 2 , ⋯   , α n \alpha_1, \alpha_2, \cdots, \alpha_n α1,α2,,αn m m m维线性空间 P m P^m Pm中的向量组.

矩阵 A A A乘以列向量 x x x可以解释为矩阵 A A A 的列向量组的线性组合,即

A x = x 1 α 1 + x 2 α 2 + ⋯ + x n α n . ( 1 ) Ax=x_1\alpha_1+x_2\alpha_2+\cdots+x_n\alpha_n. \quad \quad (1) Ax=x1α1+x2α2++xnαn.(1)

2. 矩阵 A A A的行向量组的线性组合的代数表示

若将矩阵 A A A按行分块,设其第 i i i行为 β i T \beta_i^T βiT, 则 β i T ∈ P n , \beta_i^T\in P^n, βiTPn, 换句话说, β 1 T , β 2 T , ⋯   , β m T \beta_1^T, \beta_2^T, \cdots, \beta_m^T β1T,β2T,,βmT n n n维线性空间 P n P^n Pn中的向量组.

相应地,行向量 y T y^T yT左乘以矩阵 A A A可以解释为矩阵 A A A行向量组的线性组合, 即

y T A = y 1 β 1 T + y 2 β 2 T + ⋯ + y m β m T . ( 2 ) y^TA=y_1\beta^T_1+y_2\beta_2^T+\cdots+y_m\beta_m^T. \quad \quad (2) yTA=y1β1T+y2β2T++ymβmT.(2)

二、矩阵 A A A的列空间

观察公式(1), 若让向量 x x x"跑遍" n n n维线性空间 P n P^n Pn, 则一切线性组合 A x Ax Ax就构成 P m P^m Pm的一个子空间 C ( A ) C(A) C(A)(注意:是 P m P^m Pm的子空间,因为 A x ∈ P m Ax\in P^m AxPm),称为矩阵 A A A列空间. 这个空间用集合可以表示为

C ( A ) = { A x ∣ ∀ x ∈ P n } . C(A)=\{Ax|\forall x\in P^n\}. C(A)={AxxPn}.

显然,这个列空间 C ( A ) C(A) C(A)是由 A A A的列向量组 α 1 , α 2 , ⋯   , α n \alpha_1, \alpha_2, \cdots, \alpha_n α1,α2,,αn生成的 P m P^m Pm的一个子空间,即是说, C ( A ) = L ( α 1 , α 2 , ⋯   , α n ) . C(A)=L(\alpha_1, \alpha_2, \cdots, \alpha_n). C(A)=L(α1,α2,,αn).

这样,列空间 C ( A ) C(A) C(A)的基与维数的问题就解决了.

列空间 C ( A ) C(A) C(A)的基就是向量组 α 1 , α 2 , ⋯   , α n \alpha_1, \alpha_2, \cdots, \alpha_n α1,α2,,αn 的极大线性无关组,而维数 dim ⁡ C ( A ) = r ( A ) = r . \dim C(A)=r(A)=r. dimC(A)=r(A)=r.

三、矩阵 A A A的零空间

矩阵 A A A零空间, 即齐次方程组 A x = 0 Ax=0 Ax=0解空间,记为 N ( A ) . N(A). N(A).
N ( A ) = { x ∣ A x = 0 , x ∈ P n } . N(A)=\{x|Ax=0,x\in P^n\}. N(A)={xAx=0,xPn}.

矩阵 A A A的零空间的基为齐次方程组 A x = 0 Ax=0 Ax=0的基础解系; dim ⁡ N ( A ) = n − r ( A ) = n − r . \dim N(A)=n-r(A)=n-r. dimN(A)=nr(A)=nr.

四、矩阵 A A A的行空间

将矩阵 A A A按行分块,设

A = ( β 1 T β 2 T ⋮ β m T ) . A=\begin{pmatrix}\beta_1^T\\ \beta_2^T\\\vdots\\\beta_m^T\end{pmatrix}. A=β1Tβ2TβmT.

相应于列空间 C ( A ) C(A) C(A), A A A的一切行向量的线性组合构成 P n P^n Pn的一个子空间,称为矩阵 A A A行空间,记为 R ( A ) . R(A). R(A).用集合表示为,

R ( A ) = { y T A ∣ ∀ y ∈ P m } . R(A)=\{y^TA|\forall y\in P^m\}. R(A)={yTAyPm}.

同样,行空间可以解释为生成子空间: R ( A ) = L ( β 1 T , β 2 T , ⋯   , β m T ) . R(A)=L(\beta_1^T,\beta_2^T,\cdots, \beta_m^T). R(A)=L(β1T,β2T,,βmT).

由于行向量的转置是列向量, ( y T A ) T = A T y (y^TA)^T=A^Ty (yTA)T=ATy,而且同维行向量和列向量并无本质区别,所以,矩阵 A A A的行空间与其转置矩阵的列空间可以看成是 P n P^n Pn的同一个子空间,即 R ( A ) = C ( A T ) . R(A)=C(A^T). R(A)=C(AT).

五、矩阵 A A A的左零空间

矩阵 A A A左零空间指的是 { y ∣ y T A = 0 } \{y|y^TA=0\} {yyTA=0},同上一节中的解释,矩阵 A A A的左零空间等于 A T A^T AT的零空间,故 A A A的左零空间可以记为 N ( A T ) . N(A^T). N(AT).

由第三节中的结论可以得到下面的结果:

矩阵 A A A的左零空间的基为齐次方程组 A T y = 0 A^Ty=0 ATy=0的基础解系; dim ⁡ N ( A T ) = n − r ( A ) = m − r . \dim N(A^T)=n-r(A)=m-r. dimN(AT)=nr(A)=mr.

六、关于矩阵的四种子空间的维数的重要结论

定理 (1) dim ⁡ C ( A ) + dim ⁡ N ( A ) = n ; \dim C(A)+\dim N(A)=n; dimC(A)+dimN(A)=n;
(2) dim ⁡ R ( A ) + dim ⁡ N ( A T ) = m . \dim R(A)+\dim N(A^T)=m. dimR(A)+dimN(AT)=m.

七、线性变换的值域空间和核空间与矩阵的列空间和零空间的关系

1. 值域空间的基于维数

定理 设 A \mathscr{A} A n n n维线性空间 V V V的线性变换, ε 1 , ε 2 , ⋯   , ε n \varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n ε1,ε2,,εn V V V的一组基,在这组基下 A \mathscr{A} A的矩阵为 A A A,则
(1) A V = L ( A ε 1 , A ε 2 , ⋯   , A ε n ) ; \mathscr{A}V=L(\mathscr{A}\varepsilon_1,\mathscr{A}\varepsilon_2,\cdots,\mathscr{A}\varepsilon_n); AV=L(Aε1,Aε2,,Aεn);
(2) dim ⁡ A V = r ( A ) . \dim \mathscr{A}V=r(A). dimAV=r(A).

这个定理线性变换 A \mathscr{A} A的值域空间与其矩阵 A A A的列空间实际上是同构的,于是已知线性变换 A \mathscr{A} A在某组基下的矩阵 A A A时,可以通过求 C ( A ) C(A) C(A)的一组基和维数来求得 A V \mathscr{A}V AV的基和维数,这就转化为求 A A A的极大无关组和秩。

下面举一个例子说明。

例1. ε 1 , ε 2 , ε 3 , ε 4 \varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4 ε1,ε2,ε3,ε4是线性空间 V V V的一组基,已知线性变换 σ \sigma σ在此基下的矩阵为
A = ( 1 0 2 1 − 1 2 1 3 1 2 5 5 2 − 2 1 − 2 ) . A=\begin{pmatrix}1&0&2&1\\-1&2&1&3\\1&2&5&5\\2&-2&1&-2\end{pmatrix}. A=1112022221511352.
σ ( V ) \sigma(V) σ(V)的一组基与维数,并把它扩充为 V V V的一组基.

解: 因为 σ ( V ) = L ( σ ε 1 , σ ε 2 , σ ε 3 , σ ε 4 ) \sigma (V)=L(\sigma\varepsilon_1,\sigma\varepsilon_2,\sigma \varepsilon_3,\sigma\varepsilon_4) σ(V)=L(σε1,σε2,σε3,σε4), 而 σ ε 1 , σ ε 2 , σ ε 3 , σ ε 4 \sigma\varepsilon_1,\sigma\varepsilon_2,\sigma \varepsilon_3,\sigma\varepsilon_4 σε1,σε2,σε3,σε4的坐标为 A A A的列向量组,所以可以通过求 A A A的列向量组的极大无关组来求得 σ ε 1 , σ ε 2 , σ ε 3 , σ ε 4 \sigma\varepsilon_1,\sigma\varepsilon_2,\sigma \varepsilon_3,\sigma\varepsilon_4 σε1,σε2,σε3,σε4的极大无关组的坐标,下面将 A A A化为行阶梯形:

A = ( 1 0 2 1 − 1 2 1 3 1 2 5 5 2 − 2 1 − 2 ) → ( 1 0 2 1 0 2 3 4 0 0 0 0 0 0 0 0 ) . A=\begin{pmatrix}1&0&2&1\\-1&2&1&3\\1&2&5&5\\2&-2&1&-2\end{pmatrix}\rightarrow\begin{pmatrix}1&0&2&1\\0&2&3&4\\0&0&0&0\\0&0&0&0\end{pmatrix}. A=11120222215113521000020023001400.

由此可知, A A A的第一、二列为其极大无关组,所以,

σ ε 1 = ε 1 − ε 2 + ε 3 + 2 ε 4 , σ ε 2 = 2 ε 2 + 2 ε 3 − 2 ε 4 \sigma\varepsilon_1=\varepsilon_1-\varepsilon_2+\varepsilon_3+2\varepsilon_4,\sigma\varepsilon_2=2\varepsilon_2+2\varepsilon_3-2\varepsilon_4 σε1=ε1ε2+ε3+2ε4,σε2=2ε2+2ε32ε4

σ V \sigma V σV的一组基, dim ⁡ σ ( V ) = 2 \dim \sigma (V)=2 dimσ(V)=2

为了把 σ V \sigma V σV的一组基扩充为 V V V的一组基,添加向量 ε 3 , ε 4 , \varepsilon_3,\varepsilon_4, ε3,ε4,

( σ ε 1 , σ ε 2 , ε 3 , ε 4 ) = ( ε 1 , ε 2 , ε 3 , ε 4 ) ( 1 0 0 0 − 1 2 0 0 1 2 1 0 2 − 2 0 1 ) (\sigma\varepsilon_1,\sigma\varepsilon_2,\varepsilon_3,\varepsilon_4)=(\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4)\begin{pmatrix}1&0&0&0\\-1&2&0&0\\1&2&1&0\\2&-2&0&1\end{pmatrix} (σε1,σε2,ε3,ε4)=(ε1,ε2,ε3,ε4)1112022200100001
= ( ε 1 , ε 2 , ε 3 , ε 4 ) D 1 . =(\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4)D_1. =(ε1,ε2,ε3,ε4)D1.

因为 det ⁡ D 1 ≠ 0 , \det D_1\neq 0, detD1̸=0, 所以, σ ε 1 , σ ε 2 , ε 3 , ε 4 \sigma\varepsilon_1,\sigma\varepsilon_2,\varepsilon_3,\varepsilon_4 σε1,σε2,ε3,ε4 V V V的一组基.

2.核空间的基与维数
A \mathscr{A} A n n n维线性空间 V V V的线性变换, ε 1 , ε 2 , ⋯   , ε n \varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n ε1,ε2,,εn V V V的一组基,在这组基下 A \mathscr{A} A的矩阵为 A A A,设 ξ ∈ K e r A \xi \in Ker \mathscr{A} ξKerA, 则 A ξ = 0 \mathscr{A}\xi=0 Aξ=0, 设 ξ \xi ξ在基 ε 1 , ε 2 , ⋯   , ε n \varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n ε1,ε2,,εn下的坐标为 x x x, 那么, A x = 0 Ax=0 Ax=0.

这说明线性变换 A \mathscr{A} A的核空间与矩阵 A A A的零空间是同构的。于是,要求核空间的一组基和维数,可以转化为求齐次方程组 A x = 0 Ax=0 Ax=0的基础解系及其所含向量的个数。由齐次方程组解的理论知, dim ⁡ K e r A = n − r ( A ) . \dim Ker \mathscr{A}=n-r(A). dimKerA=nr(A).

下面举一个例子说明核空间的基和维数的求法:

例2. ε 1 , ε 2 , ε 3 , ε 4 \varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4 ε1,ε2,ε3,ε4是线性空间 V V V的一组基,已知线性变换 σ \sigma σ在此基下的矩阵为
A = ( 1 0 2 1 − 1 2 1 3 1 2 5 5 2 − 2 1 − 2 ) . A=\begin{pmatrix}1&0&2&1\\-1&2&1&3\\1&2&5&5\\2&-2&1&-2\end{pmatrix}. A=1112022221511352.
K e r σ Ker \sigma Kerσ的一组基与维数,并把它扩充为 V V V的一组基.

解: ξ ∈ k e r σ \xi\in ker \sigma ξkerσ, 它在基 ε 1 , ε 2 , ε 3 , ε 4 \varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4 ε1,ε2,ε3,ε4下的坐标为 ( x 1 , x 2 , x 3 , x 4 ) (x_1,x_2,x_3,x_4) (x1,x2,x3,x4), 解齐次方程组 A x = 0 Ax=0 Ax=0,

A = ( 1 0 2 1 − 1 2 1 3 1 2 5 5 2 − 2 1 − 2 ) → ( 1 0 2 1 0 1 − 3 2 2 0 0 0 0 0 0 0 0 ) A=\begin{pmatrix}1&0&2&1\\-1&2&1&3\\1&2&5&5\\2&-2&1&-2\end{pmatrix}\rightarrow\begin{pmatrix}1&0&2&1\\0&1&-\frac{3}{2}&2\\0&0&0&0\\0&0&0&0\end{pmatrix} A=111202222151135210000100223001200
得到它的一个基础解系为:

( − 2 , 3 2 , 1 , 0 ) , ( − 1 , − 2 , 0 , 1 ) . (-2,\frac{3}{2},1,0),(-1,-2,0,1). (2,23,1,0),(1,2,0,1).

η 1 = − 2 ε 1 + 3 2 ε 2 + ε 3 , η 2 = − ε 1 − 2 ε 2 + ε 4 , \eta_1=-2\varepsilon_1+\frac{3}{2}\varepsilon_2+\varepsilon_3, \eta_2=-\varepsilon_1-2\varepsilon_2+\varepsilon_4, η1=2ε1+23ε2+ε3,η2=ε12ε2+ε4, η 1 , η 2 \eta_1,\eta_2 η1,η2 K e r σ Ker \sigma Kerσ的一组基, dim ⁡ K e r σ = 2 \dim Ker\sigma=2 dimKerσ=2

添加 ε 1 , ε 2 , \varepsilon_1,\varepsilon_2, ε1,ε2, 由于

( ε 1 , ε 2 , η 1 , η 2 ) = ( ε 1 , ε 2 , ε 3 , ε 4 ) ( 1 0 − 2 − 1 0 1 − 3 2 − 2 0 0 1 0 0 0 0 1 ) (\varepsilon_1,\varepsilon_2,\eta_1,\eta_2)=(\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4)\begin{pmatrix}1&0&-2&-1\\0&1&-\frac{3}{2}&-2\\0&0&1&0\\0&0&0&1\end{pmatrix} (ε1,ε2,η1,η2)=(ε1,ε2,ε3,ε4)10000100223101201
= ( ε 1 , ε 2 , ε 3 , ε 4 ) D 2 , =(\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4)D_2, =(ε1,ε2,ε3,ε4)D2,

因为 det ⁡ D 2 ≠ 0 \det D_2\neq 0 detD2̸=0, 所以 ε 1 , ε 2 , η 1 , η 2 \varepsilon_1,\varepsilon_2,\eta_1,\eta_2 ε1,ε2,η1,η2 V V V的一组基.

更多内容,欢迎用微信扫描下图中的二维码,或搜索“大哉数学之为用”,免费关注微信公众号“大哉数学之为用”进行阅读。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值