什么是推荐算法和主要方法

在现今的推荐技术和算法中,最被大家广泛认可和采用的就是基于协同过滤的推荐方法。

标题 ##1. 什么是推荐算法

推荐算法最早在1992年就提出来了,但是火起来实际上是最近这些年的事情,因为互联网的爆发,有了更大的数据量可以供我们使用,推荐算法才有了很大的用武之地。

最开始,所以我们在网上找资料,都是进yahoo,然后分门别类的点进去,找到你想要的东西,这是一个人工过程,到后来,我们用google,直接搜索自己需要的内容,这些都可以比较精准的找到你想要的东西,但是,如果我自己都不知道自己要找什么肿么办?最典型的例子就是,如果我打开豆瓣找电影,或者我去买说,我实际上不知道我想要买什么或者看什么,这时候推荐系统就可以派上用场了。

2. 推荐算法的条件

现在的各种各样的推荐算法,但是不管怎么样,都绕不开几个条件,这是推荐的基本条件

1.根据和你共同喜好的人来给你推荐
2.根据你喜欢的物品找出和它相似的来给你推荐
3.根据你给出的关键字来给你推荐,这实际上就退化成搜索算法了
4.根据上面的几种条件组合起来给你推荐

3. 推荐算法分类

推荐算法大致可以分为三类:

3.1 基于内容的推荐算法

基于内容的推荐算法,原理是用户喜欢和自己关注过的Item在内容上类似的Item,比如你看了哈利波特I,基于内容的推荐算法发现哈利波特II-VI,与你以前观看的在内容上面(共有很多关键词)有很大关联性,就把后者推荐给你,这种方法可以避免Item的冷启动问题(冷启动:如果一个Item从没有被关注过,其他推荐算法则很少会去推荐,但是基于内容的推荐算法可以分析Item之间的关系,实现推荐),弊端在于推荐的Item可能会重复,典型的就是新闻推荐,如果你看了一则关于MH370的新闻,很可能推荐的新闻和你浏览过的,内容一致;另外一个弊端则是对于一些多媒体的推荐(比如音乐、电影、图片等)由于很难提内容特征,则很难进行推荐,一种解决方式则是人工给这些Item打标签。

3.2 协同过滤推荐算法
协同过滤算法,原理是用户喜欢那些具有相似兴趣的用户喜欢过的商品,比如你的朋友喜欢电影哈利波特I,那么就会推荐给你,这是最简单的基于用户的协同过滤算法(user-based collaboratIve filtering),还有一种是基于Item的协同过滤算法(item-based collaborative filtering),这两种方法都是将用户的所有数据读入到内存中进行运算的,因此成为Memory-based Collaborative Filtering,另一种则是Model-based collaborative filtering,包括Aspect Model,pLSA,LDA,聚类,SVD,Matrix Factorization等,这种方法训练过程比较长,但是训练完成后,推荐过程比较快。

3.3基于知识的推荐算法。
最后一种方法是基于知识的推荐算法,也有人将这种方法归为基于内容的推荐,这种方法比较典型的是构建领域本体,或者是建立一定的规则,进行推荐。 混合推荐算法,则会融合以上方法,以加权或者串联、并联等方式尽心融合。 当然,推荐系统还包括很多方法,其实机器学习或者数据挖掘里面的方法,很多都可以应用在推荐系统中,比如说LR、GBDT、RF(这三种方法在一些电商推荐里面经常用到),社交网络里面的图结构等,都可以说是推荐方法。

没有更多推荐了,返回首页