滑雪 洛谷P2573 最小生成树

这篇博客介绍了如何使用堆优化的Prim算法解决一个滑雪路径问题。在这个问题中,a180285希望在有限的滑行距离内访问最多的景点,每个景点都有高度,并且只能从高处滑向低处。通过建立图模型并应用Prim算法,博主给出了找到最短路径和最多景点的解决方案。代码实现中展示了如何利用优先队列优化Prim算法,以求得最小总距离。
摘要由CSDN通过智能技术生成

题目描述

a180285 非常喜欢滑雪。他来到一座雪山,这里分布着 mm 条供滑行的轨道和 nn 个轨道之间的交点(同时也是景点),而且每个景点都有一编号 i\space (1 \le i \le n)i (1≤i≤n) 和一高度 h_ihi​。

a180285 能从景点 ii 滑到景点 jj 当且仅当存在一条 ii 和 jj 之间的边,且 ii 的高度不小于 jj。与其他滑雪爱好者不同,a180285 喜欢用最短的滑行路径去访问尽量多的景点。如果仅仅访问一条路径上的景点,他会觉得数量太少。

于是 a18028 5拿出了他随身携带的时间胶囊。这是一种很神奇的药物,吃下之后可以立即回到上个经过的景点(不用移动也不被认为是 a180285 滑行的距离)。

请注意,这种神奇的药物是可以连续食用的,即能够回到较长时间之前到过的景点(比如上上个经过的景点和上上上个经过的景点)。 现在,a180285站在 11 号景点望着山下的目标,心潮澎湃。他十分想知道在不考虑时间胶囊消耗的情况下,以最短滑行距离滑到尽量多的景点的方案(即满足经过景点数最大的前提下使得滑行总距离最小)。你能帮他求出最短距离和景点数吗?

输入格式

输入的第一行是两个整数 n,mn,m。 接下来一行有 nn 个整数 h_ihi​,分别表示每个景点的高度。

接下来 mm 行,表示各个景点之间轨道分布的情况。每行三个整数 u,v,ku,v,k,表示编号为 uu 的景点和编号为 vv 的景点之间有一条长度为 kk 的轨道。

输出格式

输出一行,表示 a180285 最多能到达多少个景点,以及此时最短的滑行距离总和。

输入输出样例

输入 #1复制

3 3 
3 2 1 
1 2 1 
2 3 1 
1 3 10 

输出 #1复制

3 2

说明/提示

【数据范围】
对于 30\%30% 的数据,1 \le n \le 20001≤n≤2000;
对于 100\%100% 的数据,1 \le n \le 10^51≤n≤105。

对于所有的数据,保证 1 \le m \le 10^61≤m≤106 , 1 \le h_i \le 10^91≤hi​≤109 ,1 \le k_i \le 10^91≤ki​≤109。

堆优化的prim

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 100010;const int MAX = 0x3f3f3f3f;
int height[MAXN],cnt,t,n,pre[MAXN],weight[MAXN],vis[MAXN];
struct info{
    int to,w,nt;
}node[2000010];
struct qnode{
    int v,h,dis;
    qnode(int _v = 0,int _h = 0,int _dis = 0) : v(_v),h(_h),dis(_dis){}
    bool operator < (const qnode & s) const{
        return h == s.h ? dis > s.dis : h < s.h;
    }
};
void add(int x,int y,int z)
{
	cnt++;
	node[cnt].to = y;
	node[cnt].w = z;
	node[cnt].nt = pre[x];
	pre[x] = cnt;
}
ll prim()
{
    memset(weight,MAX,sizeof(weight));
    ll sum = 0;cnt = 0;
    priority_queue<qnode> q;
    q.push(qnode(1,height[1],0));
    weight[1] = 0;
    while(!q.empty()){
        qnode temp = q.top();q.pop();
        int u = temp.v;
        if(vis[u]) continue;
        cnt++;sum += weight[u];
        vis[u] = 1;
        for(int i = pre[u]; i ;i = node[i].nt){
            if(!vis[node[i].to] && node[i].w < weight[node[i].to]){
                weight[node[i].to] = node[i].w;
                q.push(qnode(node[i].to,height[node[i].to],node[i].w));
            }
        }
    }
    return sum;
}
int main()
{
    int m,t1,t2,w;
    scanf("%d %d",&n,&m);
    for(int i = 1;i <= n; i++)
        scanf("%d",&height[i]);
    for(int i = 0;i < m; i++){
        scanf("%d %d %d",&t1,&t2,&w);
        if(height[t1] >= height[t2])
            add(t1,t2,w);
        if(height[t2] >= height[t1])
            add(t2,t1,w);
    }
    ll res = prim(); 
    printf("%d %lld",cnt,res);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值