题目描述
a180285 非常喜欢滑雪。他来到一座雪山,这里分布着 mm 条供滑行的轨道和 nn 个轨道之间的交点(同时也是景点),而且每个景点都有一编号 i\space (1 \le i \le n)i (1≤i≤n) 和一高度 h_ihi。
a180285 能从景点 ii 滑到景点 jj 当且仅当存在一条 ii 和 jj 之间的边,且 ii 的高度不小于 jj。与其他滑雪爱好者不同,a180285 喜欢用最短的滑行路径去访问尽量多的景点。如果仅仅访问一条路径上的景点,他会觉得数量太少。
于是 a18028 5拿出了他随身携带的时间胶囊。这是一种很神奇的药物,吃下之后可以立即回到上个经过的景点(不用移动也不被认为是 a180285 滑行的距离)。
请注意,这种神奇的药物是可以连续食用的,即能够回到较长时间之前到过的景点(比如上上个经过的景点和上上上个经过的景点)。 现在,a180285站在 11 号景点望着山下的目标,心潮澎湃。他十分想知道在不考虑时间胶囊消耗的情况下,以最短滑行距离滑到尽量多的景点的方案(即满足经过景点数最大的前提下使得滑行总距离最小)。你能帮他求出最短距离和景点数吗?
输入格式
输入的第一行是两个整数 n,mn,m。 接下来一行有 nn 个整数 h_ihi,分别表示每个景点的高度。
接下来 mm 行,表示各个景点之间轨道分布的情况。每行三个整数 u,v,ku,v,k,表示编号为 uu 的景点和编号为 vv 的景点之间有一条长度为 kk 的轨道。
输出格式
输出一行,表示 a180285 最多能到达多少个景点,以及此时最短的滑行距离总和。
输入输出样例
输入 #1复制
3 3 3 2 1 1 2 1 2 3 1 1 3 10
输出 #1复制
3 2
说明/提示
【数据范围】
对于 30\%30% 的数据,1 \le n \le 20001≤n≤2000;
对于 100\%100% 的数据,1 \le n \le 10^51≤n≤105。
对于所有的数据,保证 1 \le m \le 10^61≤m≤106 , 1 \le h_i \le 10^91≤hi≤109 ,1 \le k_i \le 10^91≤ki≤109。
堆优化的prim
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 100010;const int MAX = 0x3f3f3f3f;
int height[MAXN],cnt,t,n,pre[MAXN],weight[MAXN],vis[MAXN];
struct info{
int to,w,nt;
}node[2000010];
struct qnode{
int v,h,dis;
qnode(int _v = 0,int _h = 0,int _dis = 0) : v(_v),h(_h),dis(_dis){}
bool operator < (const qnode & s) const{
return h == s.h ? dis > s.dis : h < s.h;
}
};
void add(int x,int y,int z)
{
cnt++;
node[cnt].to = y;
node[cnt].w = z;
node[cnt].nt = pre[x];
pre[x] = cnt;
}
ll prim()
{
memset(weight,MAX,sizeof(weight));
ll sum = 0;cnt = 0;
priority_queue<qnode> q;
q.push(qnode(1,height[1],0));
weight[1] = 0;
while(!q.empty()){
qnode temp = q.top();q.pop();
int u = temp.v;
if(vis[u]) continue;
cnt++;sum += weight[u];
vis[u] = 1;
for(int i = pre[u]; i ;i = node[i].nt){
if(!vis[node[i].to] && node[i].w < weight[node[i].to]){
weight[node[i].to] = node[i].w;
q.push(qnode(node[i].to,height[node[i].to],node[i].w));
}
}
}
return sum;
}
int main()
{
int m,t1,t2,w;
scanf("%d %d",&n,&m);
for(int i = 1;i <= n; i++)
scanf("%d",&height[i]);
for(int i = 0;i < m; i++){
scanf("%d %d %d",&t1,&t2,&w);
if(height[t1] >= height[t2])
add(t1,t2,w);
if(height[t2] >= height[t1])
add(t2,t1,w);
}
ll res = prim();
printf("%d %lld",cnt,res);
return 0;
}