XOR的艺术 洛谷P2574 线段树

题目描述

AKN 觉得第一题太水了,不屑于写第一题,所以他又玩起了新的游戏。在游戏中,他发现,这个游戏的伤害计算有一个规律,规律如下

  1. 拥有一个伤害串,是一个长度为 nn 的只含字符 0 和字符 1 的字符串。规定这个字符串的首字符是第一个字符,即下标从 11 开始。

  2. 给定一个范围 [l,~r][l, r],伤害为伤害串的这个范围内中字符 1 的个数

  3. 会修改伤害串中的数值,修改的方法是把 [l,~r][l, r] 中所有原来的字符 0 变成 1,将 1 变成 0

AKN 想知道一些时刻的伤害,请你帮助他求出这个伤害。

输入格式

输入的第一行有两个用空格隔开的整数,分别表示伤害串的长度 nn,和操作的个数 mm。

输入第二行是一个长度为 nn 的字符串 SS,代表伤害串。

第 33 到第 (m + 2)(m+2) 行,每行有三个用空格隔开的整数 op, l, rop,l,r。代表第 ii 次操作的方式和区间,规则是:

  • 若 op = 0op=0,则表示将伤害串的 [l,~r][l, r] 区间内的 0 变成 11 变成 0
  • 若 op = 1op=1,则表示询问伤害串的 [l,~r][l, r] 区间内有多少个字符 1

输出格式

对于每次询问,输出一行一个整数,代表区间内 1 的个数。

输入输出样例

输入 #1复制

10 6
1011101001
0 2 4
1 1 5
0 3 7
1 1 10
0 1 4
1 2 6

输出 #1复制

3
6
1

说明/提示

样例输入输出 11 解释

原伤害串为 1011101001

对于第一次操作,改变 [2,~4][2, 4] 的字符,伤害串变为 1100101001

对于第二次操作,查询 [1,~5][1, 5] 内 1 的个数,共有 33 个。

对于第三次操作,改变 [3,~7][3, 7] 的字符,伤害串变为 1111010001

对于第四次操作,查询 [1,~10][1, 10] 内 1 的个数,共有 66 个。

对于第五次操作,改变 [1,~4][1, 4] 的字符,伤害串变为 0000010001

对于第六次操作,查询 [2,~6][2, 6] 内 1 的个数,共有 11 个。

数据范围与约定

对于 10\%10% 的数据,保证 n, m \leq 10n,m≤10。

另有 30\%30% 的数据,保证 n, m \leq 2 \times 10^3n,m≤2×103。

对于 100\%100% 的数据,保证 2 \leq n, m \leq 2 \times 10^52≤n,m≤2×105,0 \leq op \leq 10≤op≤1,1 \leq l \leq r \leq n1≤l≤r≤n,SS 中只含字符 0 和字符 1

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 200010;
int in[MAXN];
struct Segment_Tree{
	struct info{
		int l,r,sum,plz;
	}node[MAXN << 2];
	void Build(int n,int l,int r)
	{
		node[n].l = l,node[n].r = r;
		if(node[n].l == node[n].r){
			node[n].sum = in[l];
			return;
		}
		int mid = (l+r) >> 1,lt = n << 1,rt = n << 1|1;
		Build(lt,l,mid);Build(rt,mid+1,r);
		node[n].sum = node[lt].sum + node[rt].sum;
		return;
	}
	void push_down(int n)
	{
		if(node[n].plz % 2){
			int lt = n << 1,rt = n << 1|1;
			node[lt].sum = node[lt].r-node[lt].l+1-node[lt].sum;
			node[rt].sum = node[rt].r-node[rt].l+1-node[rt].sum;
			node[lt].plz += node[n].plz;
			node[rt].plz += node[n].plz;
			node[n].plz = 0;
		}
	}
	void modify(int n,int l,int r)
	{
		if(node[n].l >= l && node[n].r <= r){
			node[n].sum = node[n].r-node[n].l+1-node[n].sum;
			node[n].plz++;
			return;
		}
		push_down(n);
		int lt = n << 1,rt = n << 1|1;
		if(node[lt].r >= l) modify(lt,l,r);
		if(node[rt].l <= r) modify(rt,l,r);
		node[n].sum = node[lt].sum + node[rt].sum;
		return;
	}
	int query(int n,int l,int r)
	{
		if(node[n].l >= l && node[n].r <= r){
			return node[n].sum;
		}
		push_down(n);
		int lt = n << 1,rt = n << 1|1,s = 0;
		if(node[lt].r >= l) s += query(lt,l,r);
		if(node[rt].l <= r) s += query(rt,l,r);
		return s; 
	}
}ST;
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0),cout.tie(0);
	string s;
	int n,m;
	cin >> n >> m >> s;
	for(int i = 1;i <= n; i++)
		in[i] = s[i-1] - '0';
	ST.Build(1,1,n);
	for(int i = 1;i <= m; i++){
		int op,l,r;
		cin >> op >> l >> r;
		if(op == 0){
			ST.modify(1,l,r);
		}
		else{
			cout << ST.query(1,l,r) << "\n";
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值