题目描述
AKN 觉得第一题太水了,不屑于写第一题,所以他又玩起了新的游戏。在游戏中,他发现,这个游戏的伤害计算有一个规律,规律如下
-
拥有一个伤害串,是一个长度为 nn 的只含字符
0
和字符1
的字符串。规定这个字符串的首字符是第一个字符,即下标从 11 开始。 -
给定一个范围 [l,~r][l, r],伤害为伤害串的这个范围内中字符
1
的个数 -
会修改伤害串中的数值,修改的方法是把 [l,~r][l, r] 中所有原来的字符
0
变成1
,将1
变成0
。
AKN 想知道一些时刻的伤害,请你帮助他求出这个伤害。
输入格式
输入的第一行有两个用空格隔开的整数,分别表示伤害串的长度 nn,和操作的个数 mm。
输入第二行是一个长度为 nn 的字符串 SS,代表伤害串。
第 33 到第 (m + 2)(m+2) 行,每行有三个用空格隔开的整数 op, l, rop,l,r。代表第 ii 次操作的方式和区间,规则是:
- 若 op = 0op=0,则表示将伤害串的 [l,~r][l, r] 区间内的
0
变成1
,1
变成0
。 - 若 op = 1op=1,则表示询问伤害串的 [l,~r][l, r] 区间内有多少个字符
1
。
输出格式
对于每次询问,输出一行一个整数,代表区间内 1
的个数。
输入输出样例
输入 #1复制
10 6 1011101001 0 2 4 1 1 5 0 3 7 1 1 10 0 1 4 1 2 6
输出 #1复制
3 6 1
说明/提示
样例输入输出 11 解释
原伤害串为 1011101001
。
对于第一次操作,改变 [2,~4][2, 4] 的字符,伤害串变为 1100101001
。
对于第二次操作,查询 [1,~5][1, 5] 内 1
的个数,共有 33 个。
对于第三次操作,改变 [3,~7][3, 7] 的字符,伤害串变为 1111010001
。
对于第四次操作,查询 [1,~10][1, 10] 内 1
的个数,共有 66 个。
对于第五次操作,改变 [1,~4][1, 4] 的字符,伤害串变为 0000010001
。
对于第六次操作,查询 [2,~6][2, 6] 内 1
的个数,共有 11 个。
数据范围与约定
对于 10\%10% 的数据,保证 n, m \leq 10n,m≤10。
另有 30\%30% 的数据,保证 n, m \leq 2 \times 10^3n,m≤2×103。
对于 100\%100% 的数据,保证 2 \leq n, m \leq 2 \times 10^52≤n,m≤2×105,0 \leq op \leq 10≤op≤1,1 \leq l \leq r \leq n1≤l≤r≤n,SS 中只含字符 0
和字符 1
。
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 200010;
int in[MAXN];
struct Segment_Tree{
struct info{
int l,r,sum,plz;
}node[MAXN << 2];
void Build(int n,int l,int r)
{
node[n].l = l,node[n].r = r;
if(node[n].l == node[n].r){
node[n].sum = in[l];
return;
}
int mid = (l+r) >> 1,lt = n << 1,rt = n << 1|1;
Build(lt,l,mid);Build(rt,mid+1,r);
node[n].sum = node[lt].sum + node[rt].sum;
return;
}
void push_down(int n)
{
if(node[n].plz % 2){
int lt = n << 1,rt = n << 1|1;
node[lt].sum = node[lt].r-node[lt].l+1-node[lt].sum;
node[rt].sum = node[rt].r-node[rt].l+1-node[rt].sum;
node[lt].plz += node[n].plz;
node[rt].plz += node[n].plz;
node[n].plz = 0;
}
}
void modify(int n,int l,int r)
{
if(node[n].l >= l && node[n].r <= r){
node[n].sum = node[n].r-node[n].l+1-node[n].sum;
node[n].plz++;
return;
}
push_down(n);
int lt = n << 1,rt = n << 1|1;
if(node[lt].r >= l) modify(lt,l,r);
if(node[rt].l <= r) modify(rt,l,r);
node[n].sum = node[lt].sum + node[rt].sum;
return;
}
int query(int n,int l,int r)
{
if(node[n].l >= l && node[n].r <= r){
return node[n].sum;
}
push_down(n);
int lt = n << 1,rt = n << 1|1,s = 0;
if(node[lt].r >= l) s += query(lt,l,r);
if(node[rt].l <= r) s += query(rt,l,r);
return s;
}
}ST;
int main()
{
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
string s;
int n,m;
cin >> n >> m >> s;
for(int i = 1;i <= n; i++)
in[i] = s[i-1] - '0';
ST.Build(1,1,n);
for(int i = 1;i <= m; i++){
int op,l,r;
cin >> op >> l >> r;
if(op == 0){
ST.modify(1,l,r);
}
else{
cout << ST.query(1,l,r) << "\n";
}
}
return 0;
}