题目描述
AKN觉得第一题太水了,不屑于写第一题,所以他又玩起了新的游戏。在游戏中,他发现,这个游戏的伤害计算有一个规律,规律如下
1、 拥有一个伤害串为长度为n的01串。
2、 给定一个范围[l,r],伤害为伤害串的这个范围内中1的个数
3、 会被随机修改伤害串中的数值,修改的方法是把[l,r]中的所有数xor上1
AKN想知道一些时刻的伤害,请你帮助他求出这个伤害
输入输出格式
输入格式:第一行两个数n,m,表示长度为n的01串,有m个时刻
第二行一个长度为n的01串,为初始伤害串
第三行开始m行,每行三个数p,l,r
若p为0,则表示当前时刻改变[l,r]的伤害串,改变规则如上
若p为1,则表示当前时刻AKN想知道[l,r]的伤害
输出格式:对于每次询问伤害,输出一个数值伤害,每次询问输出一行
输入输出样例
输入样例#1:
10 6 1011101001 0 2 4 1 1 5 0 3 7 1 1 10 0 1 4 1 2 6
输出样例#1:
3 6 1
说明
样例解释:
1011101001
1100101001
询问[1,5]输出3
1111010001
询问[1,10]输出6
0000010001
询问[2,6]输出1
数据范围:
10%数据2≤n,m≤10
另有30%数据2≤n,m≤2000
100%数据2≤n,m≤2*10^5
By:worcher
基本线段树
#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=200005;
int n,m;
char ch[maxn];
struct node
{
int l,r,sum,tag;
}a[4*maxn];
void build(int num,int l,int r)
{
a[num].l=l,a[num].r=r;
if(l==r)
{
a[num].sum=ch[a[num].l]-'0';
return ;
}
int mid=(l+r)/2;
build(2*num,l,mid);
build(2*num+1,mid+1,r);
a[num].sum=a[2*num].sum+a[2*num+1].sum;
}
void update(int num)
{
if(a[num].l!=a[num].r)
{
a[2*num].sum=a[2*num].r-a[2*num].l+1-a[2*num].sum;
a[2*num].tag^=1;
a[2*num+1].sum=a[2*num+1].r-a[2*num+1].l+1-a[2*num+1].sum;
a[2*num+1].tag^=1;
}
a[num].tag=0;
}
void change(int num,int x,int y)
{
if(a[num].l>=x&&a[num].r<=y)
{
a[num].sum=a[num].r-a[num].l+1-a[num].sum;
a[num].tag^=1;
return ;
}
if(a[num].l>y||a[num].r<x)
return ;
if(a[num].tag!=0)
update(num);
change(2*num,x,y),change(2*num+1,x,y);
a[num].sum=a[2*num].sum+a[2*num+1].sum;
}
int query(int num,int x,int y)
{
if(a[num].l>=x&&a[num].r<=y)
return a[num].sum;
if(a[num].l>y||a[num].r<x)
return 0;
if(a[num].tag!=0)
update(num);
return query(2*num,x,y)+query(2*num+1,x,y);
}
int main()
{
scanf("%d%d%s",&n,&m,ch+1);
build(1,1,n);
while(m--)
{
int k,x,y;
scanf("%d%d%d",&k,&x,&y);
if(k==0)
change(1,x,y);
else
printf("%d\n",query(1,x,y));
}
return 0;
}