题目描述
Black Box 是一种原始的数据库。它可以储存一个整数数组,还有一个特别的变量 ii。最开始的时候 Black Box 是空的.而 i=0i=0。这个 Black Box 要处理一串命令。
命令只有两种:
-
ADD(x)
:把 xx 元素放进 Black Box; -
GET
:ii 加 11,然后输出 Black Box 中第 ii 小的数。
记住:第 ii 小的数,就是 Black Box 里的数的按从小到大的顺序排序后的第 ii 个元素。
我们来演示一下一个有11个命令的命令串。(如下表所示)
序号 | 操作 | ii | 数据库 | 输出 |
---|---|---|---|---|
1 | ADD(3) | 00 | 33 | / |
2 | GET | 11 | 33 | 33 |
3 | ADD(1) | 11 | 1,31,3 | / |
4 | GET | 22 | 1,31,3 | 33 |
5 | ADD(-4) | 22 | -4,1,3−4,1,3 | / |
6 | ADD(2) | 22 | -4,1,2,3−4,1,2,3 | / |
7 | ADD(8) | 22 | -4,1,2,3,8−4,1,2,3,8 | / |
8 | ADD(-1000) | 22 | -1000,-4,1,2,3,8−1000,−4,1,2,3,8 | / |
9 | GET | 33 | -1000,-4,1,2,3,8−1000,−4,1,2,3,8 | 11 |
10 | GET | 44 | -1000,-4,1,2,3,8−1000,−4,1,2,3,8 | 22 |
11 | ADD(2) | 44 | -1000,-4,1,2,2,3,8−1000,−4,1,2,2,3,8 | / |
现在要求找出对于给定的命令串的最好的处理方法。ADD
命令共有 mm 个,GET
命令共有 nn 个。现在用两个整数数组来表示命令串:
-
a_1,a_2,\cdots,a_ma1,a2,⋯,am:一串将要被放进 Black Box 的元素。例如上面的例子中 a=[3,1,-4,2,8,-1000,2]a=[3,1,−4,2,8,−1000,2]。
-
u_1,u_2,\cdots,u_nu1,u2,⋯,un:表示第 u_iui 个元素被放进了 Black Box 里后就出现一个
GET
命令。例如上面的例子中 u=[1,2,6,6]u=[1,2,6,6] 。输入数据不用判错。
输入格式
第一行两个整数 mm 和 nn,表示元素的个数和 GET
命令的个数。
第二行共 mm 个整数,从左至右第 ii 个整数为 a_iai,用空格隔开。
第三行共 nn 个整数,从左至右第 ii 个整数为 u_iui,用空格隔开。
输出格式
输出 Black Box 根据命令串所得出的输出串,一个数字一行。
输入输出样例
输入 #1复制
7 4 3 1 -4 2 8 -1000 2 1 2 6 6
输出 #1复制
3 3 1 2
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 200010;
int num[MAXN];
int main()
{
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
priority_queue<int> q1;
priority_queue<int,vector<int>,greater<int> > q2;
int n,m,t,r = 2;
cin >> n >> m;
for(int i = 1;i <= n; i++)
cin >> num[i];
q1.push(num[1]);
for(int i = 1;i <= m; i++){
cin >> t;
for(int j = r;j <= t; j++){
if(num[j] > q1.top()) q2.push(num[j]);
else q1.push(num[j]);
}
r = t+1;
while(q1.size() > i){
q2.push(q1.top());
q1.pop();
}
while(q1.size() < i){
q1.push(q2.top());
q2.pop();
}
cout << q1.top() << "\n";
}
return 0;
}